Sci Total Environ
August 2025
Microplastics (MPs) are pervasive environmental pollutants that have infiltrated ecosystems worldwide due to their small size and persistence. Although wastewater treatment plants (WWTPs) can achieve up to 90 % removal of MPs, this is insufficient to halt their continuous accumulation in the environment. Microalgae offer a promising and sustainable alternative for mitigating MPs pollution, as they can remove MPs from wastewater (WW) through various mechanisms.
View Article and Find Full Text PDFSci Total Environ
September 2025
Methylparaben (MP), a preservative found in daily-use products, can reach drinking water (DW) due to its incomplete removal in water treatment plants. Although parabens are related to endocrine disruption, their effects on bacterial virulence as environmental contaminants remain to be understood. This study investigates the effect of MP at environmental concentrations (15 μg/L) on the virulence of planktonic and biofilm cells of Acinetobacter calcoaceticus and Stenotrophomonas maltophilia isolated from a drinking water distribution system.
View Article and Find Full Text PDFThis study explored the use of magnetic flocculation to harvest Chlorella vulgaris from synthetic wastewater by combining polyaluminium chloride (PAC), polyacrylamide (PAM), and FeO magnetic particles. The approach focused on finding the right conditions - e.g.
View Article and Find Full Text PDFWastewater (WW) treatment using biofilms harboring bacteria and microalgae is considered a promising polishing solution to improve current treatment technologies present in wastewater treatment plants (WWTPs), but their interaction in a sessile community remains to be understood. In this work, multi-species biofilms of , , or were selected as representative microalgae species of interest for WW bioremediation, and , , or sp. were selected as the bacteria for co-cultivation in a synthetic WW since they are normally found in WW treatment processes.
View Article and Find Full Text PDFAim: This study investigates the mechanisms of action of a promising series of previously synthesized quaternary ammonium (QASs) and phosphonium (QPSs) salts, which have shown potent activity against Staphylococcus aureus, including methicillin-resistant strains (MRSA).
Methods And Results: The effects of QASs and QPSs on S. aureus surface charge, total surface hydrophobicity, intracellular potassium release, membrane integrity, and ultrastructure were examined.
Introduction: Quorum sensing (QS) is a bacterial communication mechanism that regulates gene expression, playing a crucial role in various physiological processes. Interfering with this signalling pathway is a promising strategy to control bacterial pathogenicity and virulence.
Objectives: This study evaluated the potential of two cinnamic acid derivatives, ferulic and sinapic acids, to inhibit the las and pqs systems in Pseudomonas aeruginosa.
The widespread and indiscriminate use of biocides poses significant threats to global health, socioeconomic development, and environmental sustainability by accelerating antibiotic resistance. Bacterial resistance development is highly complex and influenced significantly by environmental factors. Increased biocide usage in households, agriculture, livestock farming, industrial settings, and hospitals produces persistent chemical residues that pollute soil and aquatic environments.
View Article and Find Full Text PDFThe ability of Salmonella enterica subsp. enterica to persist and form biofilms on different surfaces can constitute a source of food contamination, being an issue of global concern. The objective of this study was to understand the biofilm formation profile of 14 S.
View Article and Find Full Text PDFPolypharmacological approaches have significant potential for the treatment of various complex diseases, including infectious bacteria-related diseases. Actually, multitargeting agents can achieve better therapeutic effects and overcome the drawbacks of monotherapy. Although multidrug multitarget strategies have demonstrated the ability to inactivate infectious bacteria, several challenges have been pointed out.
View Article and Find Full Text PDFAntimicrobial photodynamic inactivation (aPDI), using photosensitisers in combination with antibiotics, is a promising multi-target strategy to address antibiotic resistance, particularly in wound infections. This study aimed to elucidate the antibacterial mode of action of combinations of berberine (Ber) or curcumin (Cur) with selected antibiotics (Ber-Ab or Cur-Ab) under blue light irradiation (420 nm) against Staphylococcus aureus, including methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains. Multiple physiological parameters were assessed using complementary assays (fluorometry, epifluorescence microscopy, flame emission and atomic absorption spectroscopy, zeta potential, flow cytometry, and the plate agar method) to examine the effect on ROS production, membrane integrity, DNA damage, motility and virulence factors of S.
View Article and Find Full Text PDFParabens are emerging contaminants due to their abundant use as preservatives and inefficient treatment in wastewater (WW) treatment plants. To overcome the limitations of WW treatment plants in removing parabens, microalgae-based bioremediation has aroused great interest as an effective and sustainable process. Nevertheless, several factors affect the WW bioremediation capacity, which must be studied to achieve an effective biological treatment.
View Article and Find Full Text PDFIron is essential for the formation, maturation and dispersal of bacterial biofilms, playing a crucial role in the physiological and metabolic functions of bacteria as well as in the regulation of virulence. Limited availability of iron can impair the formation of robust biofilms by altering cellular motility, hydrophobicity and protein composition of the bacterial surface. In this study, the antibiofilm activity of two natural iron chelating agents, kojic acid (5-hydroxy-2-hydroxymethyl-4H-pyran-4-one) and maltol (3-hydroxy-2-methyl-4-pyrone), were investigated against Staphylococcus aureus and Pseudomonas aeruginosa.
View Article and Find Full Text PDFBiotechnol Adv
April 2025
Bacterial coaggregation is a critical process in multispecies biofilm formation, driven by specific molecular interactions that facilitate the adhesion and aggregation of bacterial cells. These interactions are essential for the development and persistence of complex microbial communities. This review provides a comprehensive analysis of the roles of the proteosurfaceome and exoproteome in bacterial coaggregation.
View Article and Find Full Text PDFParabens are markedly present in products of daily use, considered emerging environmental contaminants that can harm human health and aquatic life, due to their release into aquatic sources. The impact of the exposure of microbial communities to parabens remains unclear. This study investigates aspects of the mode of action of methylparaben (MP), propylparaben (PP), butylparaben (BP), and MIX at environmental (15 μg/L) and in-use (15000 μg/L) concentrations, against two bacterial strains of Acinetobacter calcoaceticus and Stenotrophomonas maltophilia previously isolated from drinking water (DW).
View Article and Find Full Text PDFManuel Simões was included as a corresponding author in the original publication [...
View Article and Find Full Text PDFMethylparaben (MP) is a preservative considered an environmental contaminant of emerging concern due to its persistence in water sources, including drinking water (DW). This study assesses the interaction between MP and dual-species biofilms of Acinetobacter calcoaceticus and Stenotrophomonas maltophilia. These biofilms were grown under realism-based conditions in a multiple-cylinder biofilm reactor on polypropylene (PPL) surfaces, for 7 days, and then exposed to MP at 0.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Biofilms in drinking water (DW) systems persistently challenge traditional disinfection methods due to intricate microbial interactions, with coaggregation playing a crucial role in forming multispecies biofilms. This study examined the implications of coaggregation on tolerance towards sodium hypochlorite (NaOCl) disinfection. Dual-species biofilms were formed for seven days on polyvinyl chloride coupons, comprising a strain of the emerging pathogen Stenotrophomonas maltophilia and the coaggregating strain Delftia acidovorans 005 P.
View Article and Find Full Text PDFSci Total Environ
November 2024
The biofilm architecture is significantly influenced by external environmental conditions. Biofilms grown on drinking water distribution systems (DWDS) are exposed to environmental contaminants, including parabens, and disinfection strategies, such as chlorine. Although changes in biofilm density and culturability from chemical exposure are widely reported, little is known about the effects of parabens and chlorine on biofilm morphology and architecture.
View Article and Find Full Text PDFThis work aimed to explore an alternative to the use of antibiotics for prevention and treatment of wounds infection caused by two common bacterial pathogens Staphylococcus aureus and Pseudomonas aeruginosa. For this purpose, three different essential oil components (EOCs), namely carvacrol, citronellol and cinnamic acid, were loaded into electrospun fibers of poly-ε-caprolactone (PCL) aided by alpha-cyclodextrin (αCD) and hydroxypropyl-β-cyclodextrin (HPβCD). Electrospun-fibers prepared with each EOC and their mixtures were screened for antimicrobial capability and characterized regarding morphological, mechanical, thermal, surface polarity, antibiofilm and antioxidant properties.
View Article and Find Full Text PDFSci Total Environ
October 2024
Bacterial coaggregation is a highly specific type of cell-cell interaction, well-documented among oral bacteria, and involves specific characteristics of the cell surface of the coaggregating strains. However, the understanding of the mechanisms promoting coaggregation in aquatic systems remains limited. This gap is critical to address, given the broad implications of coaggregation for multispecies biofilm formation, water quality, the performance of engineered systems, and diverse biotechnological applications.
View Article and Find Full Text PDFStaphylococcus aureus is characterized by its high resistance to conventional antibiotics, particularly methicillin-resistant (MRSA) strains, making it a predominant pathogen in acute and chronic wound infections. The persistence of acute S. aureus wound infections poses a threat by increasing the incidence of their chronicity.
View Article and Find Full Text PDFAim: Coaggregation, a highly specific cell-cell interaction mechanism, plays a pivotal role in multispecies biofilm formation. While it has been mostly studied in oral environments, its occurrence in aquatic systems is also acknowledged. Considering biofilm formation's economic and health-related implications in engineered water systems, it is crucial to understand its mechanisms.
View Article and Find Full Text PDFQuorum sensing (QS) has a central role in biofilm lifestyle and antimicrobial resistance, and disrupting these signaling pathways is a promising strategy to control bacterial pathogenicity and virulence. In this study, the efficacy of three structurally related benzaldehydes (4-hydroxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde (vanillin) and 4-hydroxy-3,5-dimethoxybenzaldehyde (syringaldehyde)) in disrupting the las and pqs systems of Pseudomonas aeruginosa was investigated using bioreporter strains and computational simulations. Additionally, these benzaldehydes were combined with tobramycin and ciprofloxacin antibiotics to evaluate their ability to increase antibiotic efficacy in preventing and eradicating P.
View Article and Find Full Text PDF