Overexpression of fatty acid synthase (FASN) has been linked to the advancement of various cancers. FASN caters to the increased demand for lipids within tumor cells, facilitating tumor growth and progression, making it an attractive target for anticancer drug discovery. Herein we report a novel series of 2-phenylquinoxaline-6-carboxylic acid derivatives as novel potent FASN inhibitors with anticancer potential.
View Article and Find Full Text PDF3 Biotech
May 2025
Unlabelled: Natural products have long served as versatile templates for discovering lead molecules against various targets of pharmacological interest. Kojic acid, a fungal metabolite epitomizes this versatility as it elicits broad-spectrum biological properties. Described herein is a series of heteroaryl thiol-linked kojic acid derivatives that demonstrate potent acetylcholinesterase (AChE) inhibition along with anti-amyloid-β (Aβ) aggregation activity and blood brain barrier (BBB) permeability highlighting their potential as a novel class of Anti-Alzheimer's therapeutics.
View Article and Find Full Text PDFContext: Multiwalled carbon nanotubes (MWCNTs) functionalized with lysine via 1,3-dipolar cycloaddition and conjugated to galactose or mannose are potential nanocarriers that can effectively bind to the lectin receptor in MDA-MB-231 or MCF-7 breast cancer cells. In this work, a method based on molecular dynamics (MD) simulation was used to predict the interaction of these functionalized MWCNTs with doxorubicin and obtain structural evidence that allows a better understanding of the drug loading and release process. The MD simulations showed that while doxorubicin only interacted with pristine MWCNTs through π-π stacking interactions, functionalized MWCNTs were also able to establish hydrogen bonds, suggesting that the functionalized groups improve doxorubicin loading.
View Article and Find Full Text PDFAntimicrob Agents Chemother
August 2022
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the infectious agent that has caused the current coronavirus disease (COVID) pandemic. Viral infection relies on the viral S (spike) protein/cellular receptor ACE2 interaction. Disrupting this interaction would lead to early blockage of viral replication.
View Article and Find Full Text PDFWith tuberculosis still being one of leading causes of death in the world and the emergence of drug-resistant strains of (Mtb), researchers have been seeking to find further therapeutic strategies or more specific molecular targets. PknB is one of the 11 Ser/Thr protein kinases of Mtb and is responsible for phosphorylation-mediated signaling, mainly involved in cell wall synthesis, cell division and metabolism. With the amount of structural information available and the great interest in protein kinases, PknB has become an attractive target for drug development.
View Article and Find Full Text PDFBiofilms are aggregates of microorganisms anchored to a surface and embedded in a self-produced matrix of extracellular polymeric substances and have been associated with 80% of all bacterial infections in humans. Because bacteria in biofilms are less amenable to antibiotic treatment, biofilms have been associated with developing antibiotic resistance, a problem that urges developing new therapeutic options and approaches. Interfering with quorum-sensing (QS), an important process of cell-to-cell communication by bacteria in biofilms is a promising strategy to inhibit biofilm formation and development.
View Article and Find Full Text PDFBiofouling
January 2021
Biofilms play an important role in health, being associated with >80% of all microbial infections in the body and in the development of antibiotic resistance. Research in this field has continuously produced large volumes of data. Being able to handle all this information will be paramount for progress in this field.
View Article and Find Full Text PDF