Publications by authors named "Subhasmita Bhal"

Cancer vaccines have become a promising approach in the fight against cancer, harnessing the remarkable capability of the human immune system to recognize and eliminate cancer cells. These vaccines are specifically engineered to activate the immune response against malignant cells, marking a significant advancement in contemporary research. By capitalizing on the unique ability of the immune system to detect and eliminate cancer cells, these vaccines present promising prospects for both prevention and therapeutic intervention.

View Article and Find Full Text PDF

A biodegradable and biocompatible micellar-based drug delivery system was developed using amphiphilic methoxy-poly(ethylene glycol)-cholesterol ( and poly(ethylene glycol)-S-S-cholesterol () conjugates and applied to the tumoral release of the water-insoluble drug curcumin. These synthesized surfactants and were found to form stable micelles (CMC ∼ 6 μM) and an average hydrodynamic size of around 20-25 nm. The curcumin-encapsulated C1 micelle was formulated by a solvent evaporation method.

View Article and Find Full Text PDF

Context: Multiwalled carbon nanotubes (MWCNTs) functionalized with lysine via 1,3-dipolar cycloaddition and conjugated to galactose or mannose are potential nanocarriers that can effectively bind to the lectin receptor in MDA-MB-231 or MCF-7 breast cancer cells. In this work, a method based on molecular dynamics (MD) simulation was used to predict the interaction of these functionalized MWCNTs with doxorubicin and obtain structural evidence that allows a better understanding of the drug loading and release process. The MD simulations showed that while doxorubicin only interacted with pristine MWCNTs through π-π stacking interactions, functionalized MWCNTs were also able to establish hydrogen bonds, suggesting that the functionalized groups improve doxorubicin loading.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are mainly responsible for tumorigenesis, chemoresistance, and cancer recurrence. CSCs growth and progression are regulated by multiple signaling cascades including Wnt/β-catenin and Hh/GLI-1, which acts independently or via crosstalk. Targeting the crosstalk of signaling pathways would be an effective approach to control the CSC population.

View Article and Find Full Text PDF

Recently, we reported that a combination of a natural, bioactive compound Resveratrol (RES) and a PARP inhibitor Olaparib (OLA) deregulated the homologous recombination (HR) pathway, and enhanced apoptosis in BRCA1-wild-type, HR-proficient breast cancer cells. Upon DNA damage, chromatin relaxation takes place, which allows the DNA repair proteins to access the DNA lesion. But whether chromatin remodeling has any role in RES + OLA-mediated HR inhibition is not known.

View Article and Find Full Text PDF

The presence of cancer stem cells (CSCs) in the tumor microenvironment (TME) is majorly responsible for the development and recurrence of cancer. Earlier reports suggested that upon DNA damage, poly-(ADP-ribose) polymerase-1 (PARP-1) helps in chromatin modulation and DNA repair process, thereby promoting CSC survival. But whether a combination of DNA damaging agents along with PARP inhibitors can modulate chromatin assembly, inhibit DNA repair processes, and subsequently target CSCs is not known.

View Article and Find Full Text PDF

Background: Breast cancer stem cells (BCSCs) have a critical role in progression of breast cancer by inducing angiogenesis. Several therapeutic strategies have been designed for the treatment of breast cancer by specifically preventing angiogenesis. But there is a dearth of study regarding the treatment procedure which can specifically target and kill the BCSCs and cause lesser harm to healthy cells of the body.

View Article and Find Full Text PDF

Wnt, Hedgehog (Hh), and Notch signaling pathways are the evolutionarily conserved signaling pathways that regulate the embryonic development and also play crucial role in maintaining stemness properties of cancer stem cells (CSCs) and inducing epithelial-to-mesenchymal transition (EMT), metastasis, and angiogenesis. It has been highly challenging to inhibit the CSCs growth and proliferation as these are capable of evading chemotherapeutic drugs and cause cancer recurrence through multiple signaling pathways. Therefore, novel therapeutic strategies to target the key players involved in the crosstalk of these signaling pathways need to be developed.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) cause drug resistance in cancer due to its extensive drug efflux, DNA repair and self-renewal capability. ATP binding cassette subfamily G member 2 (ABCG2) efflux pump afford protection to CSCs in tumors, shielding them from the adverse effects of chemotherapy. Although the role of ABCG2 in cancer progression, invasiveness, recurrence are known but its role in metastasis and angiogenesis are not clear.

View Article and Find Full Text PDF

A strategy of "Nature-to-new" with iterative scaffold-hopping was considered for investigation of privileged ring/functional motif-elaborated analogs of natural aurones. An organocatalyzed umpolung chemistry based method was established for molecular-diversity feasible synthesis of title class of chemotypes i.e.

View Article and Find Full Text PDF