A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Antimicrobial cyclodextrin-assisted electrospun fibers loaded with carvacrol, citronellol and cinnamic acid for wound healing. | LitMetric

Antimicrobial cyclodextrin-assisted electrospun fibers loaded with carvacrol, citronellol and cinnamic acid for wound healing.

Int J Biol Macromol

Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Faculty of Pharmacy, Institute of Materials (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Spain. Electronic address: carmen.alvarez.lorenzo@us

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This work aimed to explore an alternative to the use of antibiotics for prevention and treatment of wounds infection caused by two common bacterial pathogens Staphylococcus aureus and Pseudomonas aeruginosa. For this purpose, three different essential oil components (EOCs), namely carvacrol, citronellol and cinnamic acid, were loaded into electrospun fibers of poly-ε-caprolactone (PCL) aided by alpha-cyclodextrin (αCD) and hydroxypropyl-β-cyclodextrin (HPβCD). Electrospun-fibers prepared with each EOC and their mixtures were screened for antimicrobial capability and characterized regarding morphological, mechanical, thermal, surface polarity, antibiofilm and antioxidant properties. αCD formed poly(pseudo)rotaxanes with PCL and weakly interacted with EOCs, while HPβCD facilitated EOC encapsulation and formation of homogeneous fibers (500-1000 nm diameter) without beads. PCL/HPβCD fibers with high concentration of EOCs (mainly carvacrol and cinnamic acid) showed strong antibiofilm (>3 log CFU reduction) and antioxidant activity (10-50% DPPH scavenging effects). Different performances were recorded for the EOCs and their mixtures; cinnamic acid migrated to fiber surface and was released faster. Fibers biocompatibility was verified using hemolysis tests and in ovo tissue integration and angiogenesis assays. Overall, HPβCD facilitates complete release of EOCs from the fibers to the aqueous medium, being an environment-friendly and cost-effective strategy for the treatment of infected wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.134154DOI Listing

Publication Analysis

Top Keywords

cinnamic acid
16
electrospun fibers
8
carvacrol citronellol
8
citronellol cinnamic
8
eocs carvacrol
8
fibers
6
eocs
5
antimicrobial cyclodextrin-assisted
4
cyclodextrin-assisted electrospun
4
fibers loaded
4

Similar Publications