Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Recent work has shown that ion-selective components may be transferred from nanoemulsions (NEs) to endow polymeric membranes with ion-selective sensing properties. This approach has also been used for nanopipette electrodes to achieve single-entity electrochemistry, thereby sensing the ion-selective response of single adhered nanospheres. To this date, however, the mechanism and rate of component transfer remain unclear. We study here the transfer of lipophilic ionic compounds from nanoemulsions into thin plasticized poly(vinyl chloride) (PVC-DOS) films by chronoamperometry and quartz crystal microbalance. Thin-film cyclic coulovoltammetry measurements serve to quantify the uptake of lipophilic species into blank PVCDOS membranes. Electrochemical quartz crystal microbalance data indicate that the transfer of the emulsion components is insignificant, ruling out simple coalescence with the membrane film. Ionophores and ion-exchangers are shown to transfer into the membrane at rates that correlate with their lipophilicity if mass transport is not rate-limiting, which is the case with more lipophilic compounds (calcium and sodium ionophores). On the other hand, with less lipophilic compounds (valinomycin and cation-exchanger salts), transfer rates are limited by mass transport. This is confirmed with rotating disk electrode experiments in which a linear relationship between the diffusion layer thickness and current is observed. The data suggests that once the nanoemulsion container approaches the membrane surface, transfer of components occur by a three-phase partition mechanism where the aqueous phase serves as a kinetic barrier. The results help better understand and quantify the interaction between nanoemulsions and ion-selective membranes and predict membrane doping rates for a range of components.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9936608PMC
http://dx.doi.org/10.1021/acsmeasuresciau.2c00053DOI Listing

Publication Analysis

Top Keywords

quartz crystal
12
crystal microbalance
12
nanoemulsions ion-selective
8
ion-selective membranes
8
membranes electrochemical
8
electrochemical quartz
8
microbalance thin-film
8
mass transport
8
lipophilic compounds
8
transfer
6

Similar Publications

This study demonstrates the successful fabrication of nanostructured Langmuir-Blodgett (LB) films combining the conjugated copolymer poly(9,9-dioctylfluorene--3,4-ethylenedioxythiophene) (PDOF--PEDOT) with spherical and triangular silver nanoparticles (AgNP). The LB technique allowed precise control over the molecular arrangement and distribution of the nanoparticles at the air-water interface, resulting in compact, reproducible and structurally ordered nanocomposite films. The structural and morphological properties of the interfacial monolayers and LB films were investigated using surface pressure-area isotherms, Brewster angle microscopy, polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) and quartz crystal microbalance.

View Article and Find Full Text PDF

Direct Deep-UV Second-Harmonic Generation in Disordered Χ-Modulated Ferroelectric Crystals.

Adv Mater

September 2025

Research Center for Crystal Materials, CAS Key Laboratory of Functional Materials and Devices for Special Environmental Conditions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, P. R. China.

The generation of coherent deep-ultraviolet (DUV) radiation via nonlinear frequency conversion remains a major scientific and technological challenge in modern optics. To date, only a very limited number of nonlinear optical (NLO) crystals-such as KBBF, ABF, and quartz-have been experimentally demonstrated to support measurable direct second-harmonic generation (SHG) at wavelengths of 177 nm or shorter. There is a pressing need to develop alternative materials or strategies that enable efficient frequency conversion in the DUV region.

View Article and Find Full Text PDF

Leveraging topological reactivity of cellulose nanocrystals with allomorph II (CNC-II) to create temperature-sensitive systems for ibuprofen delivery.

Carbohydr Polym

November 2025

Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Cellulose nanocrystals (CNCs) have garnered attention for their renewable and reactive nature, yet CNC allomorph II (CNC-II) remains underexplored compared to the extensively studied CNC-I. This study bridges this gap by introducing a two-step carboxylamine condensation strategy to conjugate poly(ethylene glycol) (PEG) onto CNC-II via ethylenediamine, leveraging the high topochemical reactivity of CNC-II. Utilizing bicarboxylate-capped PEG as a probe, quartz crystal microbalance with energy dissipation (QCM-D) assays revealed a significant reactivity increase of 16.

View Article and Find Full Text PDF

Impact of bacteriophage MS2 adsorption on biofilm microbial communities, metabolic pathways, and protein expression in sewer systems.

J Environ Manage

September 2025

School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi Province, 710049, China. Electronic address:

The stability of microbial communities within sewer systems is essential for maintaining effluent quality and infrastructure longevity. However, the functional consequences of viral interactions with biofilms remain poorly characterised. This study examines the effects of bacteriophage MS2 adsorption on biofilm structure, metabolism, and pathogenic potential in a simulated 1 km sewer pipeline.

View Article and Find Full Text PDF

Salt reduction remains a critical challenge in oil-containing systems. We examined the influence of gum arabic (GA)-stabilized emulsions with varying oil contents (0.5, 1, and 2%) on saltiness perception.

View Article and Find Full Text PDF