Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neoadjuvant chemotherapy (NACT) used for triple negative breast cancer (TNBC) eradicates tumors in ~45% of patients. Unfortunately, TNBC patients with substantial residual cancer burden have poor metastasis free and overall survival rates. We previously demonstrated mitochondrial oxidative phosphorylation (OXPHOS) was elevated and was a unique therapeutic dependency of residual TNBC cells surviving NACT. We sought to investigate the mechanism underlying this enhanced reliance on mitochondrial metabolism. Mitochondria are morphologically plastic organelles that cycle between fission and fusion to maintain mitochondrial integrity and metabolic homeostasis. The functional impact of mitochondrial structure on metabolic output is highly context dependent. Several chemotherapy agents are conventionally used for neoadjuvant treatment of TNBC patients. Upon comparing mitochondrial effects of conventional chemotherapies, we found that DNA-damaging agents increased mitochondrial elongation, mitochondrial content, flux of glucose through the TCA cycle, and OXPHOS, whereas taxanes instead decreased mitochondrial elongation and OXPHOS. The mitochondrial effects of DNA-damaging chemotherapies were dependent on the mitochondrial inner membrane fusion protein optic atrophy 1 (OPA1). Further, we observed heightened OXPHOS, OPA1 protein levels, and mitochondrial elongation in an orthotopic patient-derived xenograft (PDX) model of residual TNBC. Pharmacologic or genetic disruption of mitochondrial fusion and fission resulted in decreased or increased OXPHOS, respectively, revealing longer mitochondria favor oxphos in TNBC cells. Using TNBC cell lines and an in vivo PDX model of residual TNBC, we found that sequential treatment with DNA-damaging chemotherapy, thus inducing mitochondrial fusion and OXPHOS, followed by MYLS22, a specific inhibitor of OPA1, was able to suppress mitochondrial fusion and OXPHOS and significantly inhibit regrowth of residual tumor cells. Our data suggest that TNBC mitochondria can optimize OXPHOS through OPA1-mediated mitochondrial fusion. These findings may provide an opportunity to overcome mitochondrial adaptations of chemoresistant TNBC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069007PMC
http://dx.doi.org/10.1038/s41388-023-02596-8DOI Listing

Publication Analysis

Top Keywords

mitochondrial
17
mitochondrial fusion
16
residual tnbc
12
mitochondrial elongation
12
tnbc
10
oxphos
9
mitochondrial structure
8
triple negative
8
negative breast
8
breast cancer
8

Similar Publications

This study investigates the effects of L-carnitine on nuclear maturation and fertilization in cattle and goat oocytes. Ovaries were collected from females with poor reproductive efficiency in the tropical climate, and cumulus-oocyte complexes (COCs) were retrieved from large antral follicles. COCs were cultured with varying concentrations of L-carnitine (0, 0.

View Article and Find Full Text PDF

Background: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease characterized by oxidative stress and progressive motor neuron degeneration. This study evaluates the potential neuroprotective effects of caffeine in the Wobbler mouse, an established model of ALS.

Methods: Wobbler mice received caffeine supplementation (60 mg/kg/day) via drinking water, and key parameters, including muscle strength, NAD metabolism, oxidative stress, and motor neuron morphology, were assessed at critical disease stages.

View Article and Find Full Text PDF

LONP1 Variants Are Associated With Clinically Diverse Phenotypes.

Clin Genet

September 2025

Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

LONP1 encodes a mitochondrial protease essential for protein quality control and metabolism. Variants in LONP1 are associated with a diverse and expanding spectrum of disorders, including Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies syndrome (CODAS), congenital diaphragmatic hernia (CDH), and neurodevelopmental disorders (NDD), with some individuals exhibiting features of mitochondrial encephalopathy. We report 16 novel LONP1 variants identified in 16 individuals (11 with NDD, 5 with CDH), further expanding the clinical spectrum.

View Article and Find Full Text PDF

The first complete mitochondrial genome of Spinturnix psi (Dermanyssoidea, Spinturnicidae): gene content, composition, rearrangement and phylogenetic implications.

Exp Appl Acarol

September 2025

Institute of Pathogens and Vectors, Yunnan Provincial Key Laboratory for Zoonosis Control and Prevention, Dali University, 22 Wanhua St, Dali, 671000, China.

The family Spinturnicidae belongs to the suborder Monogynapsida, superfamily Dermanyssoidea, and exclusively parasitizes the body surface of bats. In the present study, we determined the complete mitochondrial genome of Spinturnix psi, a species of bat mite, and subsequently conducted a comprehensive analysis of its genomic information. The mitochondrial genome of S.

View Article and Find Full Text PDF

In vivo itaconate tracing reveals degradation pathway and turnover kinetics.

Nat Metab

September 2025

Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.

Itaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized by tricarboxylic acid (TCA) metabolism downstream of TLR signalling. Itaconate-based treatment strategies are under investigation to mitigate numerous inflammatory conditions.

View Article and Find Full Text PDF