98%
921
2 minutes
20
Constructing a two- and three-dimensional (2D/3D) heterojunction structure on the surface of a 3D perovskite film, termed 2D/3D engineering, is effective in elevating the stability of perovskite polycrystal-based photovoltaic and photoelectronic devices; however, it remains controversial whether this protocol is favorable or detrimental to the device performance. Here, we prepare a series of 2D/3D perovskite films by post-treating the perovskite polycrystalline film with different concentrations of phenethylammonium iodide (PEAI). Systematic spectroscopy and electrochemical studies illustrate that PEAI can penetrate the 3D perovskite network and eliminate the intrinsic trap states of perovskite polycrystals, while the 2D perovskite nanosheets enriched on the top of the polycrystalline film may introduce additional trap states, which manipulate the photoluminescence performance and dynamics of the as-prepared perovskite films in an opposite manner. Based on this finding, the strategy of optimizing the photophysical properties of the host 3D perovskite through 2D/3D engineering is elaborated, paving the way for fabricating high-performance and high-stability perovskite polycrystalline films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.3c00125 | DOI Listing |
ACS Appl Bio Mater
September 2025
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
The generation of reactive oxygen species (ROS) through nanozyme-mediated sonocatalytic therapy has demonstrated remarkable therapeutic efficacy in the field of cancer. Nevertheless, it remains a significant challenge for nanozymes with a single catalytic active center to generate sufficient ROS via Fenton or Fenton-like reactions to effectively induce tumor cell death. In order to enhance the catalytic efficacy, we devised and synthesized a multiple active centre and mitochondrial-targeted perovskite nanozyme (NCFP), doped with cobalt (Co) element, and incorporated 4-carboxybutyltriphenylphosphonium bromide (TPP) as a mitochondrial targeting marker for ultrasound (US)-assisted enzyme-like catalytic treatment of tumors.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Jilin University, State Key Laboratory of Integrated Optoelectronics, JLU Region, College of Electronic Science and Engineering, Changchun 130012, China.
Exceptional rings (ERs) are high-dimensional non-Hermitian topologies formed by exceptional points, significantly enriching the topological properties of non-Hermitian systems. Because of the intricate topology and symmetry requirements, the realization of ERs generally demands complex structures and precise parameter tuning, resulting in relatively few experimental observations in high-dimensional periodic systems. Here, we show that even the simplest 1D non-Hermitian periodic systems can support multiple ERs, enabled by the system's multiple degrees of freedom which naturally accommodate diverse non-Hermitian perturbations.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Hunan Key Laboratory of Nanophotonics and Devices, Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha, Hunan 410083, China.
The optoelectronic properties of perovskite/two-dimensional (2D) material van der Waals heterojunctions provide greater potential for innovative neuromorphic devices. However, the traditional growth of heterojunctions still relies on strict lattice matching and high-temperature processes, which hinder high-quality interface construction and efficient carrier transport. Here, the 2D CsPbI/MoS heterojunction is realized via the van der Waals epitaxy process, overcoming lattice matching limitations.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
Duke University, Thomas Lord Department of Mechanical Engineering and Materials Science, Durham, North Carolina 27708, USA.
Chiral phonons, which are characterized by rotational atomic motion, offer a unique mechanism for transferring angular momentum from phonons to electron spins and other angular momentum carriers. In this Letter, we present a theoretical investigation into the emergence of chiral phonons in a chiral hybrid organic-inorganic perovskite (HOIP) and their critical roles in rigid-body rotation, magnetic moment generation, and spin transport under nonthermal equilibrium conditions. We demonstrate that phonon angular momentum can modify the spin chemical potential via a proposed microscopic Barnett effect, leading to a spatially varying spin chemical potential at the metal/HOIP interface, which subsequently induces spin currents in an adjacent Cu layer, with a magnitude consistent with experimental observations.
View Article and Find Full Text PDFJ Phys Chem Lett
September 2025
Department of Earth System Sciences, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
We present a systematic high-pressure investigation of the chlorine-functionalized two-dimensional hybrid perovskite (ClPMA)PbI, integrating high-pressure synchrotron powder X-ray diffraction (HP-PXRD), photoluminescence spectroscopy (HP-PL), and first-principles density functional theory (DFT) calculations. Under hydrostatic compression up to 6.18 (±0.
View Article and Find Full Text PDF