Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Point of care testing (POCT) has important clinical significance for the diagnosis and prognosis evaluation of diseases. At present, the biosensor based on CRISPR/Cas12a has become a powerful diagnostic tool due to its high sensitivity. However, CRISPR/Cas12a requires PAM sequence to recognize target double strand and only can recognize specific sequence, so it is not universal. The current RNA detection techniques either lack consideration for specificity and universality, are expensive and difficult, or both. Therefore, it is crucial to create a CRISPR/Cas12a-based RNA detection system that is easy to use, cheap, specific, and universal in order to further its use in molecular diagnostics. Here, we established a DNA circuit-mediated PAM-independent CRISPR/Cas12a coupled PolyA-rolling circle amplification for RNA detection biosensor, namely DCPRBiosensor. The DCPRBiosensor not only functions as a simple, inexpensive, and highly sensitive RNA detection sensor, but it also boasts innovative specificity and universality features. More importantly, DCPRBiosensor removes the PAM restriction of CRISPR/Cas12a. The DCPRBiosensor's detection limit reached 100 aM and it had a linear relationship between 100 aM and 10 pM. We detected four piRNAs to verify the universality and stability of DCPRBiosensor. Then, we verified that DCPRBiosensor has good discrimination ability for single-base mismatch. Finally, we successfully detected piRNA in DLD-1 and HCT-116 cells and urine mixed samples within 4.5 h. In conclusion, we believe that DCPRBiosensor will have a substantial impact on both the development of CRISPR/as12a's applications and the investigation of the clinical value of piRNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2023.115139DOI Listing

Publication Analysis

Top Keywords

rna detection
16
dna circuit-mediated
8
circuit-mediated pam-independent
8
pam-independent crispr/cas12a
8
polya-rolling circle
8
circle amplification
8
specificity universality
8
dcprbiosensor
6
rna
5
crispr/cas12a
5

Similar Publications

In dairy products, Bacillus subtilis (B. subtilis) is considered a harmful spoilage bacterium. Consequently, it is imperative to establish highly sensitive and selective approaches for detecting B.

View Article and Find Full Text PDF

Background: Fish are the largest group of vertebrates. Studying the characteristics, functions, and interactions of different fish cells is important for understanding their roles in disease and evolution. However, most single cell RNA-seq studies in fish are restricted to a few specific organs, leaving a comprehensive cell landscape that aims to characterize the heterogeneity and connections among body-wide organs largely unexplored.

View Article and Find Full Text PDF

Unraveling biomolecular interactions: a comprehensive review of the electromobility shift assay.

Photochem Photobiol Sci

September 2025

Department of Genetics and Plant Breeding, C. P. College of Agriculture, S. D. Agricultural University, Sardarkrushinagar, 385506, India.

The electromobility shift assay (EMSA) is a popular and productive molecular biology tool for studying protein-nucleic acid interactions. EMSA is a technique applied to the revelation of the binding dynamics of proteins, like transcription factors, to DNA or RNA. There are ample essential phases in the technique.

View Article and Find Full Text PDF

Purpose: Lung cancer is currently the most common malignant tumor worldwide and one of the leading causes of cancer-related deaths, posing a serious threat to human health. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNA molecules that regulate gene expression and are involved in various biological processes associated with lung cancer. Understanding the mechanisms of lung carcinogenesis and detecting disease biomarkers may enable early diagnosis of lung cancer.

View Article and Find Full Text PDF

Aberrant DNA methylation has been described in nearly all human cancers, yet its interplay with genomic alterations during tumor evolution is poorly understood. To explore this, we performed reduced representation bisulfite sequencing on 217 tumor and matched normal regions from 59 patients with non-small cell lung cancer from the TRACERx study to deconvolve tumor methylation. We developed two metrics for integrative evolutionary analysis with DNA and RNA sequencing data.

View Article and Find Full Text PDF