Perfecting the Life Clock: The Journey from PTO to TTFL.

Int J Mol Sci

College of Veterinary Medicine, China Agricultural University, Haidian, Beijing 100193, China.

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The ubiquity of biological rhythms in life implies that it results from selection in the evolutionary process. The origin of the biological clock has two possible hypotheses: the selective pressure hypothesis of the oxidative stress cycle and the light evasion hypothesis. Moreover, the biological clock gives life higher adaptability. Two biological clock mechanisms have been discovered: the negative feedback loop of transcription-translation (TTFL) and the post-translational oscillation mechanism (PTO). The TTFL mechanism is the most classic and relatively conservative circadian clock oscillation mechanism, commonly found in eukaryotes. We have introduced the TTFL mechanism of the classical model organisms. However, the biological clock of prokaryotes is based on the PTO mechanism. The Peroxiredoxin (PRX or PRDX) protein-based PTO mechanism circadian clock widely existing in eukaryotic and prokaryotic life is considered a more conservative oscillation mechanism. The coexistence of the PTO and TTFL mechanisms in eukaryotes prompted us to explain the relationship between the two. Finally, we speculated that there might be a driving force for the evolution of the biological clock. The biological clock may have an evolutionary trend from the PTO mechanism to the TTFL mechanism, resulting from the evolution of organisms adapting to the environment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9916482PMC
http://dx.doi.org/10.3390/ijms24032402DOI Listing

Publication Analysis

Top Keywords

biological clock
24
pto ttfl
12
oscillation mechanism
12
ttfl mechanism
12
pto mechanism
12
clock
9
mechanism
9
circadian clock
8
biological
7
pto
6

Similar Publications

This study investigates the interaction between circadian rhythms and lipid metabolism disruptions in the context of obesity. Obesity is known to interfere with daily rhythmicity, a crucial process for maintaining brain homeostasis. To better understand this relationship, we analyzed transcriptional data from mice fed with normal or high-fat diet, focusing on the mechanisms linking genes involved with those regulating circadian rhythms.

View Article and Find Full Text PDF

Epigenetic Age Acceleration and Cardiometabolic Biomarkers in Response to Weight-Loss Dietary Interventions Among Obese Individuals: The MACRO Trial.

Aging Cell

September 2025

Department of Epidemiology, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA.

Epigenetic clocks have emerged as promising biomarkers of aging, but their responsiveness to lifestyle interventions and relevance for short-term changes in cardiometabolic health remain uncertain. In this study, we examined the associations between three epigenetic aging measures (DunedinPACE, PCPhenoAge acceleration, and PCGrimAge acceleration) and a broad panel of cardiometabolic biomarkers in 144 obese participants from the MACRO trial, a 12-month weight-loss dietary intervention comparing low-carbohydrate and low-fat diets. At pre-intervention baseline, DunedinPACE was significantly associated with several cardiometabolic biomarkers (FDR [false discovery rate] < 0.

View Article and Find Full Text PDF

The proton (or hydrogen atom) transfer via tunneling plays a key role in chemical and biological processes. However, our understanding of multiple motion or proton concerted tunneling is very limited. Herein, we find that the weak dispersion interaction in the formic acid dimer (FAD)-fluorobenzene (PhF) system does not change the double proton transfer (DPT) barrier in FAD, but induces the FAD swing coupled with DPT.

View Article and Find Full Text PDF

Light does not phase shift the circadian clock of subcutaneous adipose tissue in vitro.

NPJ Biol Timing Sleep

September 2025

Healthy Living Spaces Lab, Institute for Occupational, Social and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.

The retinal photopigment melanopsin is also expressed in subcutaneous white adipose tissue (scWAT). Through melanopsin, light can modulate scWAT metabolism, but its impact on circadian phase is unclear. In vitro exposure of murine scWAT to bright light at different times over 24 h did not elicit phase shifts, unlike the response to corticosterone.

View Article and Find Full Text PDF

External Cues as Transducers of Peripheral Tissue-Specific Molecular Clocks to Regulate Systemic Circadian Rhythms and Metabolism.

FASEB J

September 2025

Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, China.

The molecular clock exhibits distinct characteristics across various tissues and can be synchronized by particular stimuli. Furthermore, there is an intricate interplay among the molecular clocks within different tissues. In this context, we present an overview of the tissue-specific molecular clock and discuss pivotal nonphotic regulators that govern the host's circadian rhythms and metabolic processes.

View Article and Find Full Text PDF