98%
921
2 minutes
20
Background: The ability to increase their degree of pigmentation is an adaptive response that confers pigmentable melanoma cells higher resistance to BRAF inhibitors (BRAFi) compared to non-pigmentable melanoma cells.
Methods: Here, we compared the miRNome and the transcriptome profile of pigmentable 501Mel and SK-Mel-5 melanoma cells vs. non-pigmentable A375 melanoma cells, following treatment with the BRAFi vemurafenib (vem). In depth bioinformatic analyses (clusterProfiler, WGCNA and SWIMmeR) allowed us to identify the miRNAs, mRNAs and biological processes (BPs) that specifically characterize the response of pigmentable melanoma cells to the drug. Such BPs were studied using appropriate assays in vitro and in vivo (xenograft in zebrafish embryos).
Results: Upon vem treatment, miR-192-5p, miR-211-5p, miR-374a-5p, miR-486-5p, miR-582-5p, miR-1260a and miR-7977, as well as , , , and mRNAs, are differentially expressed only in pigmentable cells. These miRNAs and mRNAs belong to BPs related to pigmentation, specifically melanosome maturation and trafficking. In fact, an increase in the number of intracellular melanosomes-due to increased maturation and/or trafficking-confers resistance to vem.
Conclusion: We demonstrated that the ability of pigmentable cells to increase the number of intracellular melanosomes fully accounts for their higher resistance to vem compared to non-pigmentable cells. In addition, we identified a network of miRNAs and mRNAs that are involved in melanosome maturation and/or trafficking. Finally, we provide the rationale for testing BRAFi in combination with inhibitors of these biological processes, so that pigmentable melanoma cells can be turned into more sensitive non-pigmentable cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9913661 | PMC |
http://dx.doi.org/10.3390/cancers15030894 | DOI Listing |
Adv Healthc Mater
September 2025
Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
Although cold atmospheric plasma is a promising therapeutic technique for tumor immunotherapy via reactive oxygen and nitrogen species (RONS), the challenges associated with the generation and delivery of these RONS hamper clinical adoption. Herein, a dual-mode hybrid discharge plasma-activated sodium alginate hydrosols (PAH) is proposed to enhance the antitumor immune response. Gaseous highly reactive RONS are generated by dual-mode hybrid plasma produced by mixed O and NO modes, which are converted into aqueous RONS in PAH via gas-liquid reactions between plasma and hydrosols.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, 11794, USA.
Compared to sun-exposed melanomas, acral melanomas are genetically diverse and occur in areas with low sun exposure and high mechanical loads. During metastatic growth, melanomas invade from the epidermis to the dermis layers through dense tumor stroma and are exposed to fibrillar collagen architectures and mechanical stresses. However, the role of these signals during acral melanoma pathogenesis is not well understood.
View Article and Find Full Text PDFMol Pharmacol
August 2025
Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; "Nicholas V. Perricone, M.D.," Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, Michigan. Electronic address:
Pirin is a nonheme iron-binding protein with a variety of proposed functions, including serving as a coactivator of p65 NFκB and quercetinase activity. We report here, failure to confirm pirin's primary proposed mechanism, binding of Fe(III)-pirin and p65. Analytical size exclusion chromatography and fluorescence polarization studies did not detect an interaction.
View Article and Find Full Text PDFInt Immunopharmacol
September 2025
The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China. Electronic address:
Melanoma is an aggressive malignancy originating from melanocytes, marked by its high metastatic potential, severe malignancy, and poor prognosis. The primary clinical approach involves surgical resection, complemented by adjuvant therapies such as radiotherapy, chemotherapy, targeted therapies, and immunotherapies. In recent years, high-dose IFNα2b has emerged as a pivotal adjuvant therapy following surgery.
View Article and Find Full Text PDFCancer Immunol Immunother
September 2025
Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital, CHUV/UNIL, 1011, Lausanne, Switzerland.
Background: Immunotherapy is a mainstay in the treatment of patients with advanced melanoma. Yet, resistance mechanisms exist, and tumour-associated macrophages (TAMs), particularly the M2-like phenotype, are associated with poorer outcomes, with CD206 serving as their specific marker. We present the first human SPECT/CT study to visualize CD206 + TAMs in patients undergoing immunotherapy and compare the findings to clinical outcomes (NCT04663126).
View Article and Find Full Text PDF