A high-throughput yeast approach to characterize aquaporin permeabilities: Profiling the Arabidopsis PIP aquaporin sub-family.

Front Plant Sci

Australian Research Council (ARC) Centre of Excellence for Translational Photosynthesis, Research School of Biology, Australian National University, Canberra, ACT, Australia.

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Engineering membrane transporters to achieve desired functionality is reliant on availability of experimental data informing structure-function relationships and intelligent design. Plant aquaporin (AQP) isoforms are capable of transporting diverse substrates such as signaling molecules, nutrients, metalloids, and gases, as well as water. AQPs can act as multifunctional channels and their transport function is reliant on many factors, with few studies having assessed transport function of specific isoforms for multiple substrates.

Methods: High-throughput yeast assays were developed to screen for transport function of plant AQPs, providing a platform for fast data generation and cataloguing of substrate transport profiles. We applied our high-throughput growth-based yeast assays to screen all 13 Arabidopsis PIPs (AtPIPs) for transport of water and several neutral solutes: hydrogen peroxide (H2O2), boric acid (BA), and urea. Sodium (Na+) transport was assessed using elemental analysis techniques.

Results: All AtPIPs facilitated water and H2O2 transport, although their growth phenotypes varied, and none were candidates for urea transport. For BA and Na+ transport, AtPIP2;2 and AtPIP2;7 were the top candidates, with yeast expressing these isoforms having the most pronounced toxicity response to BA exposure and accumulating the highest amounts of Na+. Linking putative AtPIP isoform substrate transport profiles with phylogenetics and gene expression data, enabled us to align possible substrate preferences with known and hypothesized biological roles of AtPIPs.

Discussion: This testing framework enables efficient cataloguing of putative transport functionality of diverse AQPs at a scale that can help accelerate our understanding of AQP biology through big data approaches (e.g. association studies). The principles of the individual assays could be further adapted to test additional substrates. Data generated from this framework could inform future testing of AQP physiological roles, and address knowledge gaps in structure-function relationships to improve engineering efforts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9907170PMC
http://dx.doi.org/10.3389/fpls.2023.1078220DOI Listing

Publication Analysis

Top Keywords

transport function
12
transport
11
high-throughput yeast
8
structure-function relationships
8
yeast assays
8
substrate transport
8
transport profiles
8
na+ transport
8
data
5
yeast approach
4

Similar Publications

The Anatolian ground squirrel (Spermophilus xanthoprymnus) offers a valuable model for investigating neuroadaptive processes in the retina during hibernation. This study aimed to assess the expression of vesicular glutamate transporter 1 (VGLUT1), glutamic acid decarboxylase (GAD) isoforms GAD65 and GAD67, and microtubule-associated protein 2 (MAP2) in the retina during pre-hibernation and hibernation states. Retinal tissues were analyzed using immunohistochemistry and densitometric quantification.

View Article and Find Full Text PDF

NRAMP family in plants: Contribution to cadmium accumulation.

Biochim Biophys Acta Mol Cell Res

September 2025

University of Warsaw, Faculty of Biology, Institute of Experimental Plant Biology and Biotechnology, Department of Plant Metal Homeostasis, 1 Miecznikowa Str., 02-096, Warszawa, Poland. Electronic address:

The Natural Resistance Associated Macrophage Proteins (NRAMPs) are membrane-targeted transporters with low substrate specificity, that mediate the import (translocation to the cytoplasm) of metals, mainly essential nutrients, e.g. iron (Fe), manganese (Mn), zinc (Zn), cobalt (Co), copper (Cu) or nickel (Ni).

View Article and Find Full Text PDF

Long-term effects and mechanisms of sulfur-modified nanoscale zero-valent iron in enhancing anaerobic treatment of highly toxic wastewater containing 2,4-dichlorophenol.

Bioresour Technol

September 2025

State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China. Electronic address:

Sulfur-modified nanoscale zero-valent iron (S-nZVI) has emerged as a promising additive for enhancing anaerobic treatment of refractory wastewater. However,its long-term effectiveness and role in toxic shock resistance remain unclear. Herein, S-nZVI was first applied to continuous-flow anaerobic reactors treating wastewater containing 2,4-dichlorophenol (2,4-DCP).

View Article and Find Full Text PDF

Swiss-Webster and C57BL/6 mice are differentially sensitive to the stimulant effects of methamphetamine.

Pharmacol Biochem Behav

September 2025

Department of Pharmacology, Toxicology & Neuroscience, School of Graduate Studies, Louisiana State University Health Shreveport - Shreveport, Louisiana, USA; Louisiana Addiction Research Center, Louisiana State University Health Shreveport - Shreveport, Louisiana, USA; Department of Psychiatry and B

Methamphetamine is a highly addictive psychostimulant with significant neurobiological consequences, yet strain-dependent differences in its effects remain poorly understood. This study investigated behavioral and molecular differences in Swiss-Webster and C57BL/6 mice following methamphetamine exposure. Swiss-Webster mice exhibited greater behavioral sensitivity to methamphetamine compared to C57BL/6 mice, as demonstrated by lower peak doses required to elicit locomotor stimulation and conditioned place preference.

View Article and Find Full Text PDF

Glutamate-mediated excitotoxicity represents a common pathomechanism in neurological disorders. As the predominant glutamate transporter in the central nervous system, glutamate transporter 1 (GLT-1, known as EAAT2 in humans) plays a crucial role in maintaining glutamate homeostasis and preventing excitotoxicity through its Na⁺-dependent transport mechanism. Key functions of GLT-1 include reducing extracellular glutamate concentration, regulating calcium homeostasis, suppressing oxidative stress, preserving mitochondrial integrity, and modulating neuroinflammatory processes by limiting microglial activation.

View Article and Find Full Text PDF