98%
921
2 minutes
20
Designing a specific heterojunction by assembling suitable two-dimensional (2D) semiconductors has shown significant potential in next-generation micro-nano electronic devices. In this paper, we study the structural and electronic properties of graphene-MoS (Gr-MoS) heterostructures with in-plain biaxial strain using density functional theory. It is found that the interaction between graphene and monolayer MoS is characterized by a weak van der Waals interlayer coupling with the stable layer spacing of 3.39 Å and binding energy of 0.35 J m. In the presence of MoS, the linear bands on the Dirac cone of graphene are slightly split. A tiny band gap about 1.2 meV opens in the Gr-MoS heterojunction due to the breaking of sublattice symmetry, and it could be effectively modulated by strain. Furthermore, an n-type Schottky contact is formed at the Gr-MoS interface with a Schottky barrier height of 0.33 eV, which can be effectively modulated by in-plane strain. Especially, an n-type ohmic contact is obtained when 6% tensile strain is imposed. The appearance of the non-zero band gap in graphene has opened up new possibilities for its application and the ohmic contact predicts the Gr-MoS van der Waals heterojunction nanocomposite as a competitive candidate in next-generation optoelectronics and Schottky devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9850458 | PMC |
http://dx.doi.org/10.1039/d2ra07949f | DOI Listing |
Nanoscale Horiz
September 2025
Department of Physical Chemistry, São Carlos Institute of Chemistry, University of São Paulo, Brazil.
This study developed heterogeneous catalysts composed of ZnO and CeO supported on H-ZSM-5 for the direct conversion of methane (CH) and carbon dioxide (CO) into acetic acid. The acid-base and electronic properties were modulated through oxide impregnation and reduction, aiming to create active sites capable of simultaneously activating both reactants. The samples were characterized by XRD, N physisorption, HRTEM/EDS, NH-TPD, CO-TPD, TPR, FTIR, XPS, CO-DRIFTS, and TGA, and tested in a batch reactor at 300 °C and 10 bar.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China.
Transition metal dichalcogenides (TMDs) have been extensively studied as efficient photocatalysts for water splitting. However, the utilization efficiency of photogenerated carriers remains a major limitation for their practical applications. An effective approach to address this issue is the construction of Z-scheme heterostructures.
View Article and Find Full Text PDFMater Horiz
September 2025
MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China.
Globular proteins, traditionally regarded as non-structural biomolecules due to the limited load-bearing capacity in their monomeric states, are increasingly recognized as valuable building blocks for functional-mechanical materials. Their inherent bioactivity, chemical versatility, and structural tunability enable the design of materials that combine biological functionality with tailored mechanical performance. This review highlights recent advances in engineering globular proteins-spanning natural systems (serum albumins, enzymes, milk globulins, silk sericin, and soy protein isolates) to recombinant architectures including tandem-repeat proteins-into functional-mechanical platforms.
View Article and Find Full Text PDFOrg Biomol Chem
September 2025
Universidad de Córdoba, Grupo de Química Computacional, Facultad de Ciencias Básicas, Carrera 6, No. 77-305, Montería-Córdoba, Colombia.
This study explores the photochemical conversion of BN-Dewar benzene into BN-benzvalene derivatives, offering a strategic route to heteroatom-containing valence isomers with distinctive electronic properties. Using time-dependent density functional theory (TD-DFT) and electron localization function (ELF) analyses, the excited-state mechanism and associated structural rearrangements were elucidated. Vertical excitation to the S state was found to weaken the CC and B-N bonds while strengthening the N-Si bond in silyl-substituted derivatives, a key factor enabling efficient BN-benzvalene formation.
View Article and Find Full Text PDFJ Comput Chem
September 2025
Department of Electrical and Electronic Engineering, Begum Rokeya University, Rangpur, Bangladesh.
This study presents a comprehensive first-principles and device-performance investigation of alkali metal-based anti-perovskites ZBrO (Z = K, Rb, Cs, and Fr) for advanced optoelectronic and photovoltaic applications. Using density functional theory (DFT) with GGA-PBE and mGGA-rSCAN functionals, we analyzed the structural, electronic, optical, mechanical, phonon, population, and thermoelectric properties of these compounds. All ZBrO materials exhibit direct band gaps and strong optical absorption in the visible-UV spectrum.
View Article and Find Full Text PDF