Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Melanoma is a highly aggressive cancer endowed with a unique capacity of rapidly metastasizing, which is fundamentally driven by aberrant cell motility behaviors. Discovering "migrastatics" targets, specifically controlling invasion and dissemination of melanoma cells during metastasis, is therefore of primary importance. Here, we uncover the prominent expression of the plasma membrane TRPV2 calcium channel as a distinctive feature of melanoma tumors, directly related to melanoma metastatic dissemination. In vitro as well as in vivo, TRPV2 activity is sufficient to confer both migratory and invasive potentials, while conversely TRPV2 silencing in highly metastatic melanoma cells prevents aggressive behavior. In invasive melanoma cells, TRPV2 channel localizes at the leading edge, in dynamic nascent adhesions, and regulates calcium-mediated activation of calpain and the ensuing cleavage of the adhesive protein talin, along with F-actin organization. In human melanoma tissues, TRPV2 overexpression correlates with advanced malignancy and poor prognosis, evoking a biomarker potential. Hence, by regulating adhesion and motility, the mechanosensitive TRPV2 channel controls melanoma cell invasiveness, highlighting a new therapeutic option for migrastatics in the treatment of metastatic melanoma.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10074106PMC
http://dx.doi.org/10.15252/embr.202255069DOI Listing

Publication Analysis

Top Keywords

melanoma cells
12
melanoma
10
mechanosensitive trpv2
8
trpv2 calcium
8
calcium channel
8
human melanoma
8
metastatic melanoma
8
trpv2 channel
8
trpv2
6
channel
4

Similar Publications

Lipidomic Profiling in Cancer: Phospholipid Alterations and their Role in Tumor Progression.

Curr Cancer Drug Targets

September 2025

Department of Biotechnology, Institute of Applied Sciences &Humanities, GLA University, 17km Stone, NH-19, Mathura, Delhi Road, P.O. Chaumuhan, Mathura, 281 406, U.P. India.

Phospholipids play a crucial role in various aspects of cancer biology, including tumor progression, metastasis, and cell survival. Recent studies have highlighted the signifi-cance of phospholipid metabolism and signaling in multiple cancer types, such as breast, cer-vical, prostate, bladder, colorectal, liver, lung, melanoma, mesothelioma, and oral cancer. Al-terations in phospholipid profiles, particularly in phosphatidylcholine and phosphatidylethan-olamine, have been identified as potential biomarkers for cancer diagnosis and prognosis.

View Article and Find Full Text PDF

Ultrasound-Activated Piezoelectric Nanoparticles Targeting and Activating NK Cells for Tumor Immunotherapy.

Adv Mater

September 2025

Key Laboratory for Experimental Teratology of Ministry of Education, Key Laboratory of Infection and Immunity of Shandong Province and Department of Immunology, School of Basic Medical Sciences, Cheeloo Medical College of Shandong University, Shandong University, Jinan, Shandong, 250012, China.

Natural killer (NK) cells can swiftly and efficiently kill tumor cells with low toxicity and show great potential as anticancer agents. However, the hostile tumor microenvironment (TME) reduces the number and functionality of NK cells, leading to tumor progression and the limited therapeutic effect of adoptively transferred NK cells, especially in solid tumors. Here, via mussel-inspired chemistry and targeted antibody modification strategies, functional piezoelectric nanoparticles are designed to target NK cells, named as αCD56-P@BT (for human) or αNK1.

View Article and Find Full Text PDF

Dual-Mode Hybrid Discharge Plasma-Activated Injectable Hydrosol for Enhanced Immunotherapeutic Cancer Therapy.

Adv Healthc Mater

September 2025

Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.

Although cold atmospheric plasma is a promising therapeutic technique for tumor immunotherapy via reactive oxygen and nitrogen species (RONS), the challenges associated with the generation and delivery of these RONS hamper clinical adoption. Herein, a dual-mode hybrid discharge plasma-activated sodium alginate hydrosols (PAH) is proposed to enhance the antitumor immune response. Gaseous highly reactive RONS are generated by dual-mode hybrid plasma produced by mixed O and NO modes, which are converted into aqueous RONS in PAH via gas-liquid reactions between plasma and hydrosols.

View Article and Find Full Text PDF

Compared to sun-exposed melanomas, acral melanomas are genetically diverse and occur in areas with low sun exposure and high mechanical loads. During metastatic growth, melanomas invade from the epidermis to the dermis layers through dense tumor stroma and are exposed to fibrillar collagen architectures and mechanical stresses. However, the role of these signals during acral melanoma pathogenesis is not well understood.

View Article and Find Full Text PDF

Pirin does not bind to p65 or regulate NFκB-dependent gene expression but does modulate cellular quercetin levels.

Mol Pharmacol

August 2025

Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; "Nicholas V. Perricone, M.D.," Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, Michigan. Electronic address:

Pirin is a nonheme iron-binding protein with a variety of proposed functions, including serving as a coactivator of p65 NFκB and quercetinase activity. We report here, failure to confirm pirin's primary proposed mechanism, binding of Fe(III)-pirin and p65. Analytical size exclusion chromatography and fluorescence polarization studies did not detect an interaction.

View Article and Find Full Text PDF