98%
921
2 minutes
20
Activated carbon is widely used to remove effluent organic matter (EfOM) from bio-treated coking wastewater. However, the critical carbon properties affecting adsorption performance are still unclear. Nine commercial powdered activated carbons (PACs) with different pore structures, surface functional groups, and surface charges were used to adsorb EfOM from bio-treated coking wastewater, which was fractionated according to their molecular weight (MW) and hydrophobicity. Good correlations were observed between the adsorption of biopolymers (MW > 20,000 Da, 7 %) and macropore volume (>50 nm), as well as between the adsorption of humics (MW = 1000 ~ Da, 36 %) and mesopore volume (2-50 nm), suggesting that the adsorption sites of EfOM depended on their molecular size. Higher isoelectric points and fewer acidic groups promoted the adsorption of the most negatively charged hydrophobic acids (HPOA, 39.5 %). According to variation partitioning analysis (VPA), mesopore-macropore greatly contributed to the adsorption capacities of EfOM (71.3 %), whereas the sum of phenolic hydroxyl and carboxyl (26.3 %) and isoelectric point (12.2 %) affected the normalized adsorption capacities of EfOM. In conclusion, PAC with a higher mesopore volume, fewer acidic groups, and a higher isoelectric point was desirable for removing EfOM from bio-treated coking wastewater. This study provides guidance for the selection of PAC for the removal of EfOM from bio-treated coking wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.161968 | DOI Listing |
J Hazard Mater
August 2025
School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454003, China. Electronic address:
Printed circuit board sludge (PCBS), rich in high-concentration heavy metals, poses an environmental threat but also represents a potential metal resource. To address the rising need for advanced coking wastewater treatment, this study innovatively used PCBS and coal gangue to synthesize a low-cost ceramsite catalyst (CSC) via high-temperature sintering, applying it in a heterogeneous catalytic ozonation system. By optimizing material ratios and process parameters, and using techniques such as CSC characterization and Density Functional Theory calculations, the catalytic performance and reaction mechanism of CSC were systematically investigated.
View Article and Find Full Text PDFChemosphere
September 2024
Shanghai Engineering Research Center of Energy - Saving in Heat Exchange Systems, College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, China. Electronic address:
The present study employed powdered activated coke (PAC) for the adsorptive removal of refractory COD from the bio-treated paper wastewater (BTPW). The adsorption reached equilibrium after 3 h, resulting in a decrease in the COD concentration from 98.9 mg L in BTPW to 42.
View Article and Find Full Text PDFJ Hazard Mater
June 2024
School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
Degradation of organics in high-salinity wastewater is beneficial to meeting the requirement of zero liquid discharge for coking wastewater treatment. Creating efficient and stable performance catalysts for high-salinity wastewater treatment is vital in catalytic ozonation process. Compared with ozonation alone, Mn and Ce co-doped γ-AlO could remarkably enhance activities of catalytic ozonation for chemical oxygen demand (COD) removal (38.
View Article and Find Full Text PDFWater Sci Technol
February 2024
School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
Quinoline inevitably remains in the effluent of coking wastewater treatment plants due to its bio-refractory nature, which might cause unfavorable effects on human and ecological environments. In this study, MnCeO was consciously synthesized by α-MnO doped with Ce (Ce:Mn = 1:10) and employed as the ozonation catalyst for quinoline degradation. After that, the removal efficiency and mechanism of quinoline were systematically analyzed by characterizing the physicochemical properties of MnCeO, investigating free radicals and monitoring the solution pH.
View Article and Find Full Text PDFWater Res
April 2023
School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, PR China; Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, PR China. Electronic address:
Ubiquitous macromolecular natural organic matter (NOM) in wastewater seriously influences the removal of emerging small-molecule contaminants via heterogeneous advanced oxidation processes because this material covers active sites and quenches reactive oxygen species. Here, sponge-like magnetic manganese ferrite (MnFeO-S) with a three-dimensional hierarchical porous structure was prepared via a facile solvent-free molten method. Compared with the particle-like structure of MnFeO-P, the sponge-like structure of MnFeO-S presents an enlarged specific surface area (112.
View Article and Find Full Text PDF