Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hypopharyngeal cancer (HPC) is a rare disease. Therefore, it is a challenge to automatically segment HPC tumors and metastatic lymph nodes (HPC risk areas) from medical images with the small-scale dataset. Combining low-level details and high-level semantics from feature maps in different scales can improve the accuracy of segmentation. Herein, we propose a Multi-Modality Transfer Learning Network with Hybrid Bilateral Encoder (Twist-Net) for Hypopharyngeal Cancer Segmentation. Specifically, we propose a Bilateral Transition (BT) block and a Bilateral Gather (BG) block to twist (fuse) high-level semantic feature maps and low-level detailed feature maps. We design a block with multi-receptive field extraction capabilities, M Block, to capture multi-scale information. To avoid overfitting caused by the small scale of the dataset, we propose a transfer learning method that can transfer priors experience from large computer vision datasets to multi-modality medical imaging datasets. Compared with other methods, our method outperforms other methods on HPC dataset, achieving the highest Dice of 82.98%. Our method is also superior to other methods on two public medical segmentation datasets, i.e., the CHASE_DB1 dataset and BraTS2018 dataset. On these two datasets, the Dice of our method is 79.83% and 84.87%, respectively. The code is available at: https://github.com/zhongqiu1245/TwistNet.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2023.106555DOI Listing

Publication Analysis

Top Keywords

transfer learning
12
hypopharyngeal cancer
12
feature maps
12
multi-modality transfer
8
learning network
8
network hybrid
8
hybrid bilateral
8
bilateral encoder
8
cancer segmentation
8
segmentation propose
8

Similar Publications

Introduction: Vision language models (VLMs) combine image analysis capabilities with large language models (LLMs). Because of their multimodal capabilities, VLMs offer a clinical advantage over image classification models for the diagnosis of optic disc swelling by allowing a consideration of clinical context. In this study, we compare the performance of non-specialty-trained VLMs with different prompts in the classification of optic disc swelling on fundus photographs.

View Article and Find Full Text PDF

Multi-Omics and Clinical Validation Identify Key Glycolysis- and Immune-Related Genes in Sepsis.

Int J Gen Med

September 2025

Department of Geriatrics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China.

Background: Sepsis is characterized by profound immune and metabolic perturbations, with glycolysis serving as a pivotal modulator of immune responses. However, the molecular mechanisms linking glycolytic reprogramming to immune dysfunction remain poorly defined.

Methods: Transcriptomic profiles of sepsis were obtained from the Gene Expression Omnibus.

View Article and Find Full Text PDF

Accurate differentiation between persistent vegetative state (PVS) and minimally conscious state and estimation of recovery likelihood in patients in PVS are crucial. This study analyzed electroencephalography (EEG) metrics to investigate their relationship with consciousness improvements in patients in PVS and developed a machine learning prediction model. We retrospectively evaluated 19 patients in PVS, categorizing them into two groups: those with improved consciousness ( = 7) and those without improvement ( = 12).

View Article and Find Full Text PDF

Artificial intelligence (AI) is a technique or tool to simulate or emulate human "intelligence." Precision medicine or precision histology refers to the subpopulation-tailored diagnosis, therapeutics, and management of diseases with its sociocultural, behavioral, genomic, transcriptomic, and pharmaco-omic implications. The modern decade experiences a quantum leap in AI-based models in various aspects of daily routines including practice of precision medicine and histology.

View Article and Find Full Text PDF

Introduction: Spinal cord injury (SCI) presents a significant burden to patients, families, and the healthcare system. The ability to accurately predict functional outcomes for SCI patients is essential for optimizing rehabilitation strategies, guiding patient and family decision making, and improving patient care.

Methods: We conducted a retrospective analysis of 589 SCI patients admitted to a single acute rehabilitation facility and used the dataset to train advanced machine learning algorithms to predict patients' rehabilitation outcomes.

View Article and Find Full Text PDF