New Efforts toward Aminothiazolylquinolones with Multitargeting Antibacterial Potential.

J Agric Food Chem

Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

New antibacterial 3-(aminothiazolyl)quinolones (ATQs) were designed and efficiently synthesized to counteract the growing multidrug resistance in animal husbandry. Bioactive assays manifested that ,-dicyclohexylaminocarbonyl ATQ and methyl ATQ , respectively, showed better antibacterial behavior against ATCC 29213 and than reference drug norfloxacin. Notably, highly active ATQ with low hemolysis, negligible mammalian cytotoxicity, and good pharmacokinetic properties displayed low trends to induce resistance and synergistic combinations with norfloxacin. Preliminary mechanism exploration implied that representative ATQ could inhibit the formation of biofilms and destroy bacterial membrane integrity, further binding to intracellular DNA and DNA gyrase to hinder bacterial DNA replication. ATQ could also induce the production of excess reactive oxygen species and reduce bacterial metabolism to accelerate bacterial death. These results provided a promise for 3-(aminothiazolyl)quinolones as new potential multitargeting antibacterial agents to treat bacterial infection of animals.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.2c08293DOI Listing

Publication Analysis

Top Keywords

multitargeting antibacterial
8
atq
5
bacterial
5
efforts aminothiazolylquinolones
4
aminothiazolylquinolones multitargeting
4
antibacterial
4
antibacterial potential
4
potential antibacterial
4
antibacterial 3-aminothiazolylquinolones
4
3-aminothiazolylquinolones atqs
4

Similar Publications

This study comprehensively evaluated the antimicrobial efficacy and mechanisms of ε-polylysine (ε-PL) against Yersinia enterocolitica (Y. enterocolitica) contamination in pre-prepared meat products. Surveillance data from retail pork and beef samples collected in Xi'an, China (May 2024 to April 2025) revealed a 50.

View Article and Find Full Text PDF

Fenugreek seeds ( L.) are known for their impressive range of health benefits, thanks to their diverse array of phytochemicals. These include steroidal sapogenins like diosgenin, alkaloids such as trigonelline, as well as flavonoids, saponins, galactomannans, and polyphenols.

View Article and Find Full Text PDF

The persistent threat of pathogenic microorganisms demands the development of innovative scaffolds with dual antibacterial and antifungal activities. Herein, we report the synthesis and characterization of a novel series of benzothiazole-thiazole hybrids (4a-4f) a three-step route, confirmed by NMR and MS analyses. The compounds were screened against Gram-positive, Gram-negative, mycobacterial, and fungal strains using disk diffusion and REMA assays.

View Article and Find Full Text PDF

The utilization of plant extracts in combination with various nanomaterials for treating polymicrobial wound infections represents a novel approach in overcoming the problem of antimicrobial resistance through its multi-targeted mechanism of action. The present study investigates the potential of plant extract for the green synthesis of AgZnO bimetallic nanoparticles (BMNPs). The nanoparticles obtained were characterized and the UV-Vis studies demonstrated peaks at 361 and 371 nm which were characteristic of silver and zinc oxide nanoparticles while a size range of 5-15 nm was revealed in the HR TEM studies, and the presence of crystalline ZnO and surface decorated Ag nanoparticles was observed in the diffraction patterns.

View Article and Find Full Text PDF

Novel antibacterial, antioxidant, and anti-inflammatory aminated chitosan hybrid quinoline Schiff base as multi-target agent: Design, molecular docking, and toxicity assessment.

Carbohydr Polym

November 2025

Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia; Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab Ci

This study involves the synthesis of a novel 7-ethoxy-3-formyl-2-morpholino quinoline (MQ) derivative, which was hybridized with aminated chitosan (AMCH) to yield a new AMCH-MQ Schiff base. Structural characterization via H NMR, FTIR, electronic spectra, XRD, and TGA confirmed successful hybridization. Ion exchange capacity decreased from 28.

View Article and Find Full Text PDF