Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Dasatinib is a multi-kinase inhibitor with activity against the SRC kinase LCK, which plays a critical role in T-cell receptor signaling. Dasatinib, initially developed as an immunosuppressive agent, is by contrast, also noted to result in enhanced tumor immunity in a subset of patients. We studied the impact of dasatinib in chronic myeloid leukemia patients and compared it with patients taking other tyrosine kinase inhibitors (TKI) and healthy controls. We found that patients on dasatinib showed inhibition of both T-cell receptor (TCR) and STAT5 signaling pathways, and reduced expression of Teffector pro-inflammatory cytokines. In addition, dasatinib induced selective depletion of regulatory T cells (Tregs) and effector Tregs, particularly in patients with clonal expansion of effector CD8+ T cells, who demonstrated greater and preferential inhibition of Treg TCR intracellular signaling. In addition, we show that dasatinib selectively reduces Treg STAT5 phosphorylation via reduction of IL-2, in relation with the marked reduction of plasma IL-2 levels in patients taking dasatinib. Finally, patients on other TKI had significantly increased TCR signaling in TIM3+ cells compared to patients taking dasatinib, suggesting that chronic SRC kinase inhibition by dasatinib may play a role in preventing TIM-3-mediated T-cell exhaustion and preserve anti-tumor immunity. These data provide further insight into the selective immunomodulatory effects of dasatinib and its potential use for pharmacologic control of immunotherapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10230408PMC
http://dx.doi.org/10.3324/haematol.2022.282005DOI Listing

Publication Analysis

Top Keywords

t-cell receptor
12
patients dasatinib
12
dasatinib
11
inhibition t-cell
8
stat5 signaling
8
signaling pathways
8
immunomodulatory effects
8
effects dasatinib
8
dasatinib chronic
8
chronic myeloid
8

Similar Publications

Amplifying antigen-induced cellular responses with proximity labelling.

Nature

September 2025

Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Key Laboratory of RNA Innovation Science and Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.

Antigen-induced clustering of cell surface receptors, including T cell receptors and Fc receptors, represents a widespread mechanism in cell signalling activation. However, most naturally occurring antigens, such as tumour-associated antigens, stimulate limited receptor clustering and on-target responses owing to insufficient density. Here we repurpose proximity labelling, a method used to biotinylate and identify spatially proximal proteins, to amplify designed probes as synthetic antigen clusters on the cell surface.

View Article and Find Full Text PDF

Background: Tumor heterogeneity and antigen escape are mechanisms of resistance to chimeric antigen receptor (CAR)-T cell therapy, especially in solid tumors. Targeting multiple antigens with a unique CAR construct could be a strategy for a better tumor control than monospecific CAR-T cells on heterogeneous models. To overcome tumor heterogeneity, we targeted mesothelin (meso) and Mucin 16 (MUC16), two antigens commonly expressed in solid tumors, using a tandem CAR design.

View Article and Find Full Text PDF

Comparative efficacy and safety of PSCA CAR-engineered Vδ1 γδ T cells for immunotherapy of pancreatic cancer.

J Immunother Cancer

September 2025

Division of Hematology & Oncology, Department of Medicine, School of Medicine, University of California, Irvine, California, USA

Background: γδ T cells possess unique immunological features including tissue tropism, major histocompatibility complex-independent antigen recognition, and hybrid T/natural killer cell properties that make them promising candidates for cancer immunotherapy. However, the therapeutic potential of Vδ1 γδ T cells, particularly when engineered with chimeric antigen receptors (CARs), remains underexplored in solid tumors such as pancreatic cancer (PC), largely due to their low abundance in peripheral blood and challenges in ex vivo expansion. This study aims to directly compare the preclinical safety and efficacy among CAR-engineered Vδ1 γδ T cells, Vδ2 γδ T cells, and conventional αβ T cells.

View Article and Find Full Text PDF

T-cell receptors (TCRs) recognize antigens derived from fragments of somatically expressed proteins that are degraded by the proteasome and presented by specific human leukocyte antigen (HLA) molecules. Recent therapeutic advances using the TCR as a tumor-targeting moiety have focused attention on loss of heterozygosity (LOH) as a potential resistance mechanism. Allele-specific LOH, rather than allele-agnostic, is particularly pertinent, but rarely evaluated.

View Article and Find Full Text PDF

Touch of youth: Mechanosensing expands stem-like CAR-T cells.

Immunity

September 2025

Key Laboratory of Multi-cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China. Electronic address:

In this issue of Immunity, Lv et al. develop a new CAR-T cell culture system that uses integrin mechanical signaling to boost CAR-T proliferation while preserving stemness, pointing out a new direction of CAR-T manufacturing.

View Article and Find Full Text PDF