Cyclodextrin Metal-Organic Framework as a Broad-Spectrum Potential Delivery Vehicle for the Gasotransmitters.

Molecules

Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.

Published: January 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The important role of gasotransmitters in physiology and pathophysiology suggest employing gasotransmitters for biomedical treatment. Unfortunately, the difficulty in storage and controlled delivery of these gaseous molecules hindered the development of effective gasotransmitters-based therapies. The design of a safe, facile, and wide-scale method to delivery multiple gasotransmitters is a great challenge. Herein, we use an ultrasonic assisted preparation γ-cyclodextrin metal organic framework (γ-CD-MOF) as a broad-spectrum delivery vehicle for various gasotransmitters, such as SO, NO, and HS. The release rate of gasotransmitters could be tuned by modifying the γ-CD-MOF with different Pluronics. The biological relevance of the exogenous gasotransmitters produced by this method is evidenced by the DNA cleavage ability and the anti-inflammatory effects. Furthermore, the γ-CD-MOF composed of food-grade γ-CD and nontoxic metal salts shows good biocompatibility and particle size (180 nm). Therefore, γ-CD-MOF is expected to be an excellent tool for the study of co-delivery and cooperative therapy of gasotransmitters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9866194PMC
http://dx.doi.org/10.3390/molecules28020852DOI Listing

Publication Analysis

Top Keywords

delivery vehicle
8
gasotransmitters
8
vehicle gasotransmitters
8
cyclodextrin metal-organic
4
metal-organic framework
4
framework broad-spectrum
4
broad-spectrum potential
4
delivery
4
potential delivery
4
gasotransmitters role
4

Similar Publications

Transient electronics for sustainability: Emerging technologies and future directions.

Beilstein J Nanotechnol

September 2025

Department of Materials Science and Engineering, Seoul National University, Seoul, 08826 Republic of Korea.

Transient electronics are emerging as a promising class of devices designed to disappear after a defined operational period, addressing growing concerns over sustainability and long-term biocompatibility. Built from biodegradable materials that undergo hydrolysis or enzymatic degradation, these systems are particularly well suited for temporary implantable applications, such as neural monitors, wireless stimulators, and drug delivery vehicles, as well as environmentally benign electronics for soil or aquatic disposal. Despite their potential, key challenges remain in expanding the material set for diverse functionalities, achieving high-density integration for advanced operations, and enabling precise lifetime control through strategies such as protective encapsulation.

View Article and Find Full Text PDF

Aptamers as target-specific recognition elements in drug delivery.

Adv Drug Deliv Rev

September 2025

Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Molecular, Cellular, and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Chemistry, CUNY Gradua

Targeted drug delivery significantly enhances therapeutic efficacy across various diseases, particularly in cancer treatments, where conventional approaches such as chemotherapy and radiotherapy often cause severe side effects. In this context, nucleic acid aptamers-short, single-stranded DNA or RNA oligonucleotides capable of binding specific targets with high affinity-have emerged as promising tools for precision drug delivery and therapy. Aptamers can be selected against whole, living cells using SELEX and chemically modified for diverse applications.

View Article and Find Full Text PDF

Harnessing the significant buildup of lactic acid (LA) within the tumor microenvironment (TME) for metabolic manipulation presents a promising avenue for cancer treatment. Nevertheless, single-agent therapies often fail to address the complex and varying needs of TME heterogeneity, posing a substantial scientific hurdle in oncology. In this context, we employ asymmetric mesoporous silica nanoparticles (AMS NPs) as delivery vehicles, simultaneously loading them with zinc‑cobalt‑manganese ferrite nanoparticles (ZCMF NPs), lactate oxidase (LOX), and doxorubicin (DOX).

View Article and Find Full Text PDF

The retinol isotope dilution (RID) test is the most sensitive method to assess vitamin A status by estimating total liver reserves, considered the reference standard. For gas chromatography-combustion-isotope ratio mass spectrometry detection, C is added to the retinol moiety. The synthetic procedure for C-retinyl acetate begins with the naturally occurring β-ionone.

View Article and Find Full Text PDF

Enhance therapeutic efficacy of BiTE (HER2/CD3) for HER2- positive tumors through expression.

Int J Pharm X

December 2025

Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, China, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.

Bispecific T-cell engagers (BiTEs) are small-molecule antibodies that exhibits potent tumoricidal activity but suffer from a short plasma half-life. Mesenchymal stromal cells (MSCs) represent promising delivery vehicles for sustained therapeutic protein expression. In this study, we used human umbilical cord blood-MSCs (hUC-MSCs) as a delivery system to to secrete HER2/CD3 BiTE antibodies, thereby addressing the pharmacokinetic limitations of conventional BiTE therapies.

View Article and Find Full Text PDF