Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Translational research in medicine, defined as the transfer of knowledge and discovery from the basic sciences to the clinic, is typically achieved through interactions between members across scientific disciplines to overcome the traditional silos within the community. Thus, translational medicine underscores 'Team Medicine', the partnership between basic science researchers and clinicians focused on addressing a specific goal in medicine. Here, we highlight this concept from a City of Hope perspective. Using cisplatin resistance in non-small cell lung cancer (NSCLC) as a paradigm, we describe how basic research scientists, clinical research scientists, and medical oncologists, in true 'Team Science' spirit, addressed cisplatin resistance in NSCLC and identified a previously approved compound that is able to alleviate cisplatin resistance in NSCLC. Furthermore, we discuss how a 'Team Medicine' approach can help to elucidate the mechanisms of innate and acquired resistance in NSCLC and develop alternative strategies to overcome drug resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9861808PMC
http://dx.doi.org/10.3390/jcm12020599DOI Listing

Publication Analysis

Top Keywords

cisplatin resistance
16
resistance nsclc
12
resistance non-small
8
non-small cell
8
cell lung
8
lung cancer
8
translational medicine
8
'team medicine'
8
resistance
6
systems biology
4

Similar Publications

Introduction: Copper complexes, as endogenous metals, have potential in cancer therapy, addressing issues associated with cisplatin. Since cisplatin uses Copper Transporter 1 (CTR1) for cellular entry, copper complexes may utilize this pathway to enhance transport efficiency.

Methods: The Cu/Na dipicolinic acid complex was synthesized to assess its cytotoxicity, induction of apoptosis, drug resistance, and inflammation in cancerous and normal lung cells.

View Article and Find Full Text PDF

Mevalonate Metabolic Reprogramming Drives Cisplatin Resistance in Bladder Cancer: Mechanisms and Therapeutic Targeting.

Protein Pept Lett

September 2025

Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou730000, Gansu, China.

Introduction: Dysregulation of mevalonate metabolism is a hallmark of tumorigenesis and therapy resistance across malignancies, though its role in bladder cancer remains unclear. This study aimed to elucidate its impact on prognosis and cisplatin chemosensitivity in bladder cancer.

Methods: Transcriptomic data and clinical information of bladder cancer patients were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases.

View Article and Find Full Text PDF

Platinum-group metal half-sandwich complexes are considered to be potential replacements of the clinically widely used platins which have several side effects and tend to cause resistance to develop. In our previous works, we used a range of 2-pyridyl-substituted N- and C-glycosyl heterocycles as N,N-chelating ligands to prepare ruthenium(II), osmium(II), iridium(III) and rhodium(III) polyhapto arene/arenyl half-sandwich complexes. Some of these complexes, particularly with the C-glucopyranosyl isoxazole derived ligand in its O-perbenzoylated form, exhibited greater anticancer efficiency than cisplatin and had minimal or negligible effects on non-transformed fibroblasts.

View Article and Find Full Text PDF

GJB2 promotes ovarian cancer progression and cisplatin resistance by upregulating TNC expression.

Biochim Biophys Acta Mol Cell Res

September 2025

Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Care Hospital-Tangshan, China; Key Laboratory of Molecular Medicine for Abnormal Development and Related Diseases in Tangshan City-Tangshan, China. Electronic address: wu

Cisplatin resistance continues to be a major obstacle in the treatment of ovarian cancer (OC). Gap junction protein β-2 (GJB2), a key member of the connexin family, is well-known for its association with hereditary deafness. However, its role in ovarian cancer chemotherapy resistance remains unexplored.

View Article and Find Full Text PDF

Development of six novel dinuclear calcium(II) complexes based on 8-hydroxyquinoline as anticancer agents.

J Inorg Biochem

September 2025

State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China. Electronic address:

This study reports the synthesis and antitumor evaluation of six novel dinuclear calcium(II) complexes with the general formula [Ca(μ-O)(QM)(QH)], designated as CaQ1 through CaQ6. These complexes incorporate various deprotonated 8-hydroxyquinoline ligands (H-QM-H-QM) and 1,10-phenanthroline derivatives (QH), synthesized using Ca(NO)·4HO. The specific compositions are as follows: CaQ1: H-QM = 5,7-dibromo-8-hydroxyquinoline (x = 1), QH = bathophenanthroline; CaQ2: H-QM = 5,7-dichloro-8-quinolinol (x = 2), QH = bathophenanthroline; CaQ3: H-QM = 5,7-diiodo-8-hydroxyquinoline (x = 3), QH = 1,10-phenanthroline; CaQ4: H-QM = 5,7-dichloro-8-quinolinol (x = 2), QH = 1,10-phenanthroline; CaQ5: H-QM = clioquinol (x = 4), QH = 1,10-phenanthroline; CaQ6: H-QM = 5,7-dibromo-8-hydroxyquinoline (x = 1), QH = 1,10-phenanthroline.

View Article and Find Full Text PDF