Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fungal copper radical oxidases (CROs) from the Auxiliary Activity family 5 (AA5) constitute a group of metalloenzymes that oxidize a wide panel of natural compounds, such as galactose-containing saccharides or primary alcohols, into product derivatives exhibiting promising biotechnological interests. Despite a well-conserved first copper-coordination sphere and overall fold, some members of the AA5_2 subfamily are incapable of oxidizing galactose and galactosides but conversely efficiently catalyse the oxidation of diverse aliphatic alcohols. The objective of this study was to understand which residues dictate the substrate preferences between alcohol oxidases and galactose oxidases within the AA5_2 subfamily. Based on structural differences and molecular modelling predictions between the alcohol oxidase from Colletotrichum graminicola (CgrAlcOx) and the archetypal galactose oxidase from Fusarium graminearum (FgrGalOx), a rational mutagenesis approach was developed to target regions or residues potentially driving the substrate specificity of these enzymes. A set of 21 single and multiple CgrAlcOx variants was produced and characterized leading to the identification of six residues (W39, F138, M173, F174, T246, L302), in the vicinity of the active site, crucial for substrate recognition. Two multiple CgrAlcOx variants, i.e. M4F (W39F, F138W, M173R and T246Q) and M6 (W39F, F138W, M173R, F174Y, T246Q and L302P), exhibited a similar affinity for carbohydrate substrates when compared to FgrGalOx. In conclusion, using a rational site-directed mutagenesis approach, we identified key residues involved in the substrate selectivity of AA5_2 enzymes towards galactose-containing saccharides.

Download full-text PDF

Source
http://dx.doi.org/10.1111/febs.16713DOI Listing

Publication Analysis

Top Keywords

copper radical
8
radical oxidases
8
substrate selectivity
8
galactose-containing saccharides
8
aa5_2 subfamily
8
mutagenesis approach
8
multiple cgralcox
8
cgralcox variants
8
w39f f138w
8
f138w m173r
8

Similar Publications

Chemodynamic therapy (CDT), leveraging Fenton reactions to generate hydroxyl radicals (•OH) from intracellular hydrogen peroxide (HO), offers a promising cancer treatment strategy due to its high specificity and low systemic toxicity. However, the targeted delivery of •OH-producing prodrugs using covalent organic frameworks (COFs) remains a significant challenge. Here, we report a mitochondria-targeted COF-based nano prodrug, COF-31@P, designed for enhanced CDT efficacy.

View Article and Find Full Text PDF

Cuproptosis relies on intracellular copper accumulation and shows great potential in tumor therapy. However, the high content of glutathione (GSH) in tumor cells limits its effectiveness. Furthermore, the mechanism of immune activation mediated by cuproptosis remains unclear.

View Article and Find Full Text PDF

Ligand-Enabled Cu-Catalyzed Deoxyalkynylation of α-Unfunctionalized Alcohols with Terminal Alkynes.

Angew Chem Int Ed Engl

September 2025

Shenzhen Grubbs Institute, Department of Chemistry, Guangming Advanced Research Institute, and Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, 518055, China.

Despite the widespread utility of transition metal-catalyzed cross-couplings in organic synthesis, the coupling of unactivated alkyl electrophiles remains challenging due to sluggish oxidative addition and competing side reactions. Here, we describe a general and practical copper-catalyzed radical deoxyalkynylation of α-unfunctionalized alcohols through a synergistic combination of Barton-McCombie deoxygenation and copper-catalyzed radical cross-coupling. Key to the success of this method lies in not only the development of rigid anionic multiple N,N,N-ligand to exert remarkable selectivity of highly reactive unactivated alkyl radicals, but also the selection of one suitable oxidant to suppress Glaser homocoupling and other side products.

View Article and Find Full Text PDF

As humanity ventures beyond Earth, developing radiation-stable coatings from non-fossil sources becomes essential. Beta radiation can significantly harm materials, making it essential to seek resilient, biobased alternatives to work in corrosive environments and high temperatures. Herein, a novel lignin-based coating demonstrating exceptional beta-radiation resistance and anticorrosion properties is presented.

View Article and Find Full Text PDF

Recyclable Cu-Catalyzed -Methylation and C5-Methylthiomethylation of Isatins with DMSO.

J Org Chem

September 2025

Guangxi Key Laboratory of Electrochemical and Magneto-Chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.

An unprecedented recyclable system of copper-catalyzed C-C/N coupling of isatins and DMSO without any oxidant and acidic/basic additive has been unlocked. The -isatins occur tandem -methylation and C5-methylthiomethylation in order, while -substituted isatins proceed C5-methylthiomethylation only. DMSO serves as Me and MeSCH sources as well as the solvent.

View Article and Find Full Text PDF