Publications by authors named "Mireille Haon"

Background: Lignin-carbohydrate complexes in lignocellulosic biomass act as a barrier to its biodegradation and biotechnological exploitation. Enzymatic dissociation between lignin and hemicellulose is a key process that allows the efficient bioconversion of both polymers. Glucuronoyl esterases of the Carbohydrate Esterase 15 family target the ester linkages between the glucuronic acid of xylan and lignin moieties, assisting enzymatic biodegradation of lignocellulose.

View Article and Find Full Text PDF

The worldwide accumulation of plastic waste in the environment, along with its lifespan of hundreds of years, represents a serious threat to ecosystems. Enzymatic recycling of plastic waste offers a promising solution, but the high chemical inertness and hydrophobicity of plastics pose several challenges to enzymes. In nature, lytic polysaccharide monooxygenases (LPMOs) can act at the surface of recalcitrant biopolymers, taking advantage of their solvent-exposed active sites and appended carbohydrate-binding modules (CBMs).

View Article and Find Full Text PDF

Carbohydrate-active enzymes involved in the degradation of plant cell walls and/or the assimilation of plant carbohydrates for energy uptake are widely distributed in microorganisms. In contrast, they are less frequent in animals, although there are exceptions, including examples of carbohydrate-active enzymes acquired by horizontal gene transfer from bacteria or fungi in several of phytophagous arthropods and plant-parasitic nematodes. Although the whitefly Bemisia tabaci is a major agricultural pest, knowledge of horizontal gene transfer-acquired carbohydrate-active enzymes in this phloem-feeding insect of the Hemiptera order (subfamily Aleyrodinae) is still lacking.

View Article and Find Full Text PDF
Article Synopsis
  • Pectin is a complex substance in plant cell walls, crucial for breaking down in animal feed to enhance nutrient absorption.
  • Significant amounts of pectin are found in soybean meal, a common poultry feed, but its structure and the necessary enzymes for degradation are not well understood.
  • The study developed and tested various combinations of fungal enzymes, identifying 10 effective ones for breaking down soybean meal pectin, mainly from the fungus Talaromyces versatilis, and proposes a new structural model for understanding pectin in feed.
View Article and Find Full Text PDF

Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that oxidatively cleave recalcitrant polysaccharides such as cellulose. Several studies have reported LPMO action in synergy with other carbohydrate-active enzymes (CAZymes) for the degradation of lignocellulosic biomass but direct LPMO action at the plant tissue level remains challenging to investigate. Here, we have developed a MALDI-MS imaging workflow to detect oxidised oligosaccharides released by a cellulose-active LPMO at cellular level on maize tissues.

View Article and Find Full Text PDF
Article Synopsis
  • This research explores how mutualistic symbiosis, specifically the relationship between fungi and green algae or cyanobacteria, has been crucial for the evolution of lichens.
  • The study involved sequencing the genomes of various lichen algal symbionts and non-symbiotic algae, revealing three independent instances where algae gained the ability to form lichen partnerships.
  • A specific enzyme (from the GH8 family) was identified as key to this symbiosis, having been acquired through horizontal gene transfer, which allowed these algae to better associate with fungal partners.
View Article and Find Full Text PDF

Lytic polysaccharide monooxygenases (LPMOs) are monocopper enzymes that oxidatively degrade various polysaccharides, such as cellulose. Despite extensive research on this class of enzymes, the role played by their C-terminal regions predicted to be intrinsically disordered (dCTR) has been overlooked. Here, we investigated the function of the dCTR of an LPMO, called AA9A, up-regulated during plant infection by , the causative agent of anthracnose.

View Article and Find Full Text PDF
Article Synopsis
  • * Though LPMOs have been primarily studied for their role in converting plant biomass, new research suggests they may also play significant roles in fungal infections, especially in pathogenic fungi like Ustilaginomycetes.
  • * This study highlights the AA10 LPMO's ability to cleave chitin in fungal cell walls, enhancing hydrolysis by another enzyme, indicating its potential importance in the life cycle of fungi.
View Article and Find Full Text PDF

Lytic polysaccharide monooxygenases (LPMOs) are taxonomically widespread copper-enzymes boosting biopolymers conversion (e.g. cellulose, chitin) in Nature.

View Article and Find Full Text PDF

Fungi often adapt to environmental stress by altering their size, shape, or rate of cell division. These morphological changes require reorganization of the cell wall, a structural feature external to the cell membrane composed of highly interconnected polysaccharides and glycoproteins. Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that are typically secreted into the extracellular space to catalyze initial oxidative steps in the degradation of complex biopolymers such as chitin and cellulose.

View Article and Find Full Text PDF

Fungal copper radical oxidases (CROs) from the Auxiliary Activity family 5 (AA5) constitute a group of metalloenzymes that oxidize a wide panel of natural compounds, such as galactose-containing saccharides or primary alcohols, into product derivatives exhibiting promising biotechnological interests. Despite a well-conserved first copper-coordination sphere and overall fold, some members of the AA5_2 subfamily are incapable of oxidizing galactose and galactosides but conversely efficiently catalyse the oxidation of diverse aliphatic alcohols. The objective of this study was to understand which residues dictate the substrate preferences between alcohol oxidases and galactose oxidases within the AA5_2 subfamily.

View Article and Find Full Text PDF

Global food security is endangered by fungal phytopathogens causing devastating crop production losses. Many of these pathogens use specialized appressoria cells to puncture plant cuticles. Here, we unveil a pair of alcohol oxidase-peroxidase enzymes to be essential for pathogenicity.

View Article and Find Full Text PDF

Filamentous fungi are keystone microorganisms in the regulation of many processes occurring on Earth, such as plant biomass decay and pathogenesis as well as symbiotic associations. In many of these processes, fungi secrete carbohydrate-active enzymes (CAZymes) to modify and/or degrade carbohydrates. Ten years ago, while evaluating the potential of a secretome from the maize pathogen Ustilago maydis to supplement lignocellulolytic cocktails, we noticed it contained many unknown or poorly characterized CAZymes.

View Article and Find Full Text PDF

Background: Fungal saccharification of lignocellulosic biomass occurs concurrently with the secretion of a diverse collection of proteins, together functioning as a catalytic system to liberate soluble sugars from insoluble composite biomaterials. How different fungi respond to different substrates is of fundamental interest to the developing biomass saccharification industry. Among the cornerstones of fungal enzyme systems are the highly expressed cellulases (endo-β-glucanases and cellobiohydrolases).

View Article and Find Full Text PDF

In ectomycorrhiza, root penetration and colonization of the intercellular space by symbiotic hyphae is thought to rely on the mechanical force that results from hyphal tip growth, enhanced by the activity of secreted cell-wall-degrading enzymes. Here, we characterize the biochemical properties of the symbiosis-induced polygalacturonase LbGH28A from the ectomycorrhizal fungus Laccaria bicolor. The transcriptional regulation of LbGH28A was measured by quantitative PCR (qPCR).

View Article and Find Full Text PDF

There is significant contemporary interest in the application of enzymes to replace or augment chemical reagents toward the development of more environmentally sound and sustainable processes. In particular, copper radical oxidases (CRO) from Auxiliary Activity Family 5 Subfamily 2 (AA5_2) are attractive, organic cofactor-free catalysts for the chemoselective oxidation of alcohols to the corresponding aldehydes. These enzymes were first defined by the archetypal galactose-6-oxidase (GalOx, EC 1.

View Article and Find Full Text PDF

Copper radical alcohol oxidases (CRO-AlcOx), which have been recently discovered among fungal phytopathogens, are attractive for the production of fragrant fatty aldehydes. With the initial objective to investigate the secretion of CRO-AlcOx by natural fungal strains, we undertook time course analyses of the secretomes of three Colletotrichum species (C. graminicola, C.

View Article and Find Full Text PDF

The ability of , a fungus widely used for the commercial production of hemicellulases and cellulases, to grow and modify technical soda lignin was investigated. By quantifying fungal genomic DNA, showed growth and sporulation in solid and liquid cultures containing lignin alone. The analysis of released soluble lignin and residual insoluble lignin was indicative of enzymatic oxidative conversion of phenolic lignin side chains and the modification of lignin structure by cleaving the β-O-4 linkages.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers screened New Caledonia mangrove sediments for xylanase genes, focusing on GH11 xylanases, which are involved in breaking down plant materials.
  • The study revealed that xylanase diversity was influenced more by the tree species and seasonal changes than by sediment depth; one specific enzyme, Xyn11-29, was characterized for its potential industrial applications.
  • Xyn11-29 showed optimal activity at 40-50 °C and pH 5.5, demonstrating significant hydrolysis capacity, particularly on destarched wheat bran, while its enzymatic performance in the presence of sea salt was also evaluated.
View Article and Find Full Text PDF
Article Synopsis
  • Fungal biotechnology is increasingly important in the bioeconomy, especially for addressing pollution caused by human activities.
  • Biological Resource Centres are essential for developing biotechnological solutions that maintain biological diversity.
  • A large-scale study of over 1,000 fungal strains revealed their ability to degrade various industrial pollutants, highlighting the functional diversity among fungi and their potential for addressing ecosystem pollution.
View Article and Find Full Text PDF
Article Synopsis
  • The study focused on the diversity of fungal dye-decolorizing peroxidases (DyPs) in New Caledonian mangrove sediments, examining their distribution and biochemical characteristics.
  • During the research, the highest DyP diversity was found in surface sediments during the wet season, with one predominant DyP isoform (OFU1) making up to 100% of sequences in some samples.
  • The key enzyme DyP1 was characterized for its stability and ability to oxidize phenolic substrates, showing promise for decolorizing industrial dyes, particularly under varying pH and temperature conditions.
View Article and Find Full Text PDF

Oxidative plant cell-wall processing enzymes are of great importance in biology and biotechnology. Yet, our insight into the functional interplay amongst such oxidative enzymes remains limited. Here, a phylogenetic analysis of the auxiliary activity 7 family (AA7), currently harbouring oligosaccharide flavo-oxidases, reveals a striking abundance of AA7-genes in phytopathogenic fungi and Oomycetes.

View Article and Find Full Text PDF

Understanding enzymatic breakdown of plant biomass is crucial to develop nature-inspired biotechnological processes. Lytic polysaccharide monooxygenases (LPMOs) are microbial enzymes secreted by fungal saprotrophs involved in carbon recycling. LPMOs modify biomass by oxidatively cleaving polysaccharides, thereby enhancing the efficiency of glycoside hydrolases.

View Article and Find Full Text PDF

The high demand for energy and the increase of the greenhouse effect propel the necessity to develop new technologies to efficiently deconstruct the lignocellulosic materials into sugars monomers. Sugarcane bagasse is a rich polysaccharide residue from sugar and alcohol industries. The thermophilic fungus (syn.

View Article and Find Full Text PDF