98%
921
2 minutes
20
Learning latent representations of patients with a target disease is a core problem in a broad range of downstream applications, such as clinical endpoint prediction. The suffering of patients may have multiple subtypes with certain similarities and differences, which need to be addressed for learning effective patient representation to facilitate the downstream tasks. However, existing studies either ignore the distinction of disease subtypes to learn disease-level representations, or neglect the correlations between subtypes and only learn disease subtype-level representations, which affects the performance of patient representation learning. To alleviate this problem, we studied how to effectively integrate data from all disease subtypes to improve the representation of each subtype. Specifically, we proposed a knowledge-aware shared-private neural network model to explicitly use disease-oriented knowledge and learn shared and specific representations from the disease and its subtype perspectives. To evaluate the feasibility of the proposed model, we conducted a particular downstream task, i.e., clinical endpoint prediction, on the basis of the learned patient presentations. The results on the real-world clinical datasets demonstrated that our model could yield a significant improvement over state-of-the-art models.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbi.2023.104292 | DOI Listing |
Front Vet Sci
August 2025
Pathobiology and Population Science, Royal Veterinary College, Hatfield, United Kingdom.
Diffuse large B-cell lymphoma is the most common type of non-Hodgkin lymphoma (NHL) in humans, accounting for about 30-40% of NHL cases worldwide. Canine diffuse large B-cell lymphoma (cDLBCL) is the most common lymphoma subtype in dogs and demonstrates an aggressive biologic behaviour. For tissue biopsies, current confirmatory diagnostic approaches for enlarged lymph nodes rely on expert histopathological assessment, which is time-consuming and requires specialist expertise.
View Article and Find Full Text PDFMed Phys
September 2025
School of Computer, Electronics and Information, Guangxi University, Nanning, China.
Background: Deformable medical image registration is a critical task in medical imaging-assisted diagnosis and treatment. In recent years, medical image registration methods based on deep learning have made significant success by leveraging prior knowledge, and the registration accuracy and computational efficiency have been greatly improved. Models based on Transformers have achieved better performance than convolutional neural network methods (ConvNet) in image registration.
View Article and Find Full Text PDFBMC Musculoskelet Disord
September 2025
Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.
Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.
Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.
Cereb Cortex
August 2025
Nencki Institute of Experimental Biology, PAS, 3 Pasteur Street, 02-093 Warsaw, Poland.
In the visual cortices, receptive fields (RFs) are arranged in a gradient from small sizes in the center of the visual field to the largest sizes at the periphery. Using functional magnetic resonance imaging (fMRI) mapping of population RFs, we investigated RF adaptation in V1, V2, and V3 in patients after long-term photoreceptor degeneration affecting the central (Stargardt disease [STGD]) and peripheral (Retinitis Pigmentosa [RP]) regions of the retina. In controls, we temporarily limited the visual field to the central 10° to model peripheral loss.
View Article and Find Full Text PDFJ Glaucoma
September 2025
Harvard Medical School, Boston, MA.
Purpose: Large language models (LLMs) can assist patients who seek medical knowledge online to guide their own glaucoma care. Understanding the differences in LLM performance on glaucoma-related questions can inform patients about the best resources to obtain relevant information.
Methods: This cross-sectional study evaluated the accuracy, comprehensiveness, quality, and readability of LLM-generated responses to glaucoma inquiries.