Knowledge-aware patient representation learning for multiple disease subtypes.

J Biomed Inform

College of Computer Science and Technology, Zhejiang University, 866 Yuhangtang Road, 310058 Hangzhou, People's Republic of China. Electronic address:

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Learning latent representations of patients with a target disease is a core problem in a broad range of downstream applications, such as clinical endpoint prediction. The suffering of patients may have multiple subtypes with certain similarities and differences, which need to be addressed for learning effective patient representation to facilitate the downstream tasks. However, existing studies either ignore the distinction of disease subtypes to learn disease-level representations, or neglect the correlations between subtypes and only learn disease subtype-level representations, which affects the performance of patient representation learning. To alleviate this problem, we studied how to effectively integrate data from all disease subtypes to improve the representation of each subtype. Specifically, we proposed a knowledge-aware shared-private neural network model to explicitly use disease-oriented knowledge and learn shared and specific representations from the disease and its subtype perspectives. To evaluate the feasibility of the proposed model, we conducted a particular downstream task, i.e., clinical endpoint prediction, on the basis of the learned patient presentations. The results on the real-world clinical datasets demonstrated that our model could yield a significant improvement over state-of-the-art models.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbi.2023.104292DOI Listing

Publication Analysis

Top Keywords

patient representation
12
disease subtypes
12
representation learning
8
clinical endpoint
8
endpoint prediction
8
subtypes learn
8
disease
6
subtypes
5
knowledge-aware patient
4
representation
4

Similar Publications

Diffuse large B-cell lymphoma is the most common type of non-Hodgkin lymphoma (NHL) in humans, accounting for about 30-40% of NHL cases worldwide. Canine diffuse large B-cell lymphoma (cDLBCL) is the most common lymphoma subtype in dogs and demonstrates an aggressive biologic behaviour. For tissue biopsies, current confirmatory diagnostic approaches for enlarged lymph nodes rely on expert histopathological assessment, which is time-consuming and requires specialist expertise.

View Article and Find Full Text PDF

Lightweight hybrid Mamba2 for unsupervised medical image registration.

Med Phys

September 2025

School of Computer, Electronics and Information, Guangxi University, Nanning, China.

Background: Deformable medical image registration is a critical task in medical imaging-assisted diagnosis and treatment. In recent years, medical image registration methods based on deep learning have made significant success by leveraging prior knowledge, and the registration accuracy and computational efficiency have been greatly improved. Models based on Transformers have achieved better performance than convolutional neural network methods (ConvNet) in image registration.

View Article and Find Full Text PDF

Use of artificial intelligence for classification of fractures around the elbow in adults according to the 2018 AO/OTA classification system.

BMC Musculoskelet Disord

September 2025

Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.

Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.

Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.

View Article and Find Full Text PDF

In the visual cortices, receptive fields (RFs) are arranged in a gradient from small sizes in the center of the visual field to the largest sizes at the periphery. Using functional magnetic resonance imaging (fMRI) mapping of population RFs, we investigated RF adaptation in V1, V2, and V3 in patients after long-term photoreceptor degeneration affecting the central (Stargardt disease [STGD]) and peripheral (Retinitis Pigmentosa [RP]) regions of the retina. In controls, we temporarily limited the visual field to the central 10° to model peripheral loss.

View Article and Find Full Text PDF

Purpose: Large language models (LLMs) can assist patients who seek medical knowledge online to guide their own glaucoma care. Understanding the differences in LLM performance on glaucoma-related questions can inform patients about the best resources to obtain relevant information.

Methods: This cross-sectional study evaluated the accuracy, comprehensiveness, quality, and readability of LLM-generated responses to glaucoma inquiries.

View Article and Find Full Text PDF