98%
921
2 minutes
20
In this paper, we proposed a quality of transmission (QoT) prediction technique for the quality of service (QoS) link setup based on machine learning classifiers, with synthetic data generated using the transmission equations instead of the Gaussian noise (GN) model. The proposed technique uses some link and signal characteristics as input features. The bit error rate (BER) of the signals was compared with the forward error correction threshold BER, and the comparison results were employed as labels. The transmission equations approach is a better alternative to the GN model (or other similar margin-based models) in the absence of real data (i.e., at the deployment stage of a network) or the case that real data are scarce (i.e., for enriching the dataset/reducing probing lightpaths); furthermore, the three classifiers trained using the data of the transmission equations are more reliable and practical than those trained using the data of the GN model. Meanwhile, we noted that the priority of the three classifiers should be support vector machine (SVM) >K nearest neighbor (KNN) > logistic regression (LR) as shown in the results obtained by the transmission equations, instead of SVM > LR > KNN as in the results of the GN model.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9743930 | PMC |
http://dx.doi.org/10.1007/s12200-020-1079-y | DOI Listing |
Front Physiol
August 2025
Laboratory of Muscle and Tendon Plasticity, Graduate Program in Rehabilitation Science, Faculdade de Ciências e Tecnologias em Saúde, Universidade de Brasília, Brasília, Brazil.
Introduction: There are limited studies on the long-term effects of COVID-19 on skeletal muscle morphology and architecture. Therefore, this study aims to address this gap by assessing the effects of prior COVID-19 infection on quadriceps muscle architecture and tendon-aponeurosis complex (TAC) properties over a one-year period, comparing three cohorts: individuals with moderate COVID-19, individuals with severe COVID-19, and a healthy control group.
Methods: Seventy participants were included in the study and allocated to three groups: moderate COVID-19 (n = 22), severe COVID-19 (n = 18), and control (n = 30).
PLoS One
September 2025
Instituto de Física, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil.
Dengue fever remains a major public health concern, requiring continuous efforts to mitigate its impact. This study investigates the influence of key temperature-dependent parameters on dengue transmission dynamics in Foz do Iguaçu, a tri-border municipality in southern Brazil, using a mathematical model based on a system of ordinary differential equations. The fitted model aligns well with observed data.
View Article and Find Full Text PDFChaos
September 2025
School of Mathematical Sciences, Capital Normal University, Beijing 100048, China.
In this paper, we propose a general latent HIV infection model with general incidence and three distributed delays. We start with the analysis of the proposed model by establishing the positivity and boundedness of solutions and calculating basic reproduction number R0. Then, we show that the infection-free equilibrium is globally asymptotically stable when R0<1 (is globally attractive when R0=1), while the disease is uniformly persistent when R0>1.
View Article and Find Full Text PDFThis study developed a GeoGebra platform-based interactive pedagogical tool focusing on plate theory to address challenges associated with abstract theory transmission, unidirectional knowledge delivery, and low student engagement in chromatography teaching in instrumental analysis courses. This study introduced an innovative methodology that encompasses theoretical model reconstruction, tool development, and teaching-chain integration that addresses the limitations of existing teaching tools, including the complex operation of professional software, restricted accessibility to web-based tools, and insufficient parameter-adjustment flexibility. An improved mathematical plate-theory model was established by incorporating mobile-phase flow rate, dead time, and phase ratio parameters.
View Article and Find Full Text PDFJ Acoust Soc Am
September 2025
Centre for Marine Science and Technology, Curtin University, Perth, Western Australia 6102, Australia.
The unified fast multipole boundary element method (FMBEM) has been adapted to treat acoustic scattering from an elastic inclusion located near to (or embedded on) the interface between two semi-infinite fluid half-spaces. The parallel broadband Helmholtz FMBEM is used to model each fluid domain, while the elastic inclusion is modelled using either the finite element method, or an analogous elastodynamic FMBEM. The boundary integral equation for each fluid half-space is formulated to account for the transmission and reflection of the incident acoustic field from the planar surface of the interface, and so only the scattered field from the elastic inclusion and/or localised surface scattering features on the interface surface are evaluated.
View Article and Find Full Text PDF