98%
921
2 minutes
20
Development of rapid and sensitive method for the discrimination of bases in oligonucleotides is of great importance in clinical diagnosis. Here, we demonstrate the first case of single iridium(III) solvent complex-based electrogenerated chemiluminescence (ECL) and photoluminescence (PL) sensor array for the discrimination of bases in oligonucleotides. One iridium (III) solvent complex ([Ir(ppy)(DMSO)Cl], ppy = 2-phenylpyridine, probe 1) was designed as both ECL and PL probe while five bases (guanine, adenine, cytosine, thymine and uracil) were chosen as analytes. Two-element sensor array was built for the discrimination of five bases based on the fingerprint response of probe 1 to bases via coordination interactions. The combination of unique ECL and PL variations with principal component analysis was applied for the quantitative analysis of five bases in a linear range of 1.0 μM-10 μM and for the effective discrimination of individual base, the mixture of bases and oligonucleotides. Moreover, the sensor array was successfully applied to discriminate different mismatched ss-DNAs from HIV gene (a fully-matched ss-DNA), even at single-base difference. This work demonstrates that the sensor array using single iridium (III) solvent complex is a promising approach for the discrimination of bases with good sensitivity and simpleness in clinical diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioelechem.2023.108368 | DOI Listing |
ACS Sens
September 2025
School of Physics and Electric Engineering, Linyi University, Linyi 276000, China.
In this study, employing a 2D electrodeposition in situ assembly method, a high-performance HS sensor based on a p-n type CuO-CuFeO heterostructure ordered nanowire arrays was successfully fabricated on silicon substrates. Compared to CuO, CuO-CuFeO nanowire arrays exhibits an ideal interfacial barrier structure and higher initial resistance, with a response to 10 ppm of HS at room temperature (20 ± 3 °C) increased by 225 times and a response time reduced by over 2400 s. The sensor demonstrates exceptional sensitivity (LOD = 10 ppb; response = 234.
View Article and Find Full Text PDFAnal Chem
September 2025
School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
Abnormal glycosylation is widespread in cancer, and the overexpression of glycoantigens is a manifestation of glycosylation abnormalities. Tn antigen, sTn antigen, and T antigen are known as tumor-associated glycoantigens, and their expression varies in different tumors or subtypes of the same tumor. Therefore, simultaneous detection of these three glycoantigens is of great significance for the diagnosis of tumors.
View Article and Find Full Text PDFTalanta
September 2025
Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Department of Chemistry, Karaman, 70100, Turkey.
Biogenic amines (BAs) are organic nitrogen compounds formed through microbial decarboxylation of amino acids during food spoilage and biological metabolism. Therefore, the development of rapid, selective, and cost-effective detection strategies for BAs is significant for ensuring food safety and quality. In this study, a new dicyanoisophorone-based fluorescent probe (IPC) was developed, capable of fluorescence detection of aliphatic primary amines (e.
View Article and Find Full Text PDFNano Lett
September 2025
School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China.
Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, 510641, China.
Recently, flexible airflow sensors have attracted significant attention due to their impressive characteristics and capabilities for airflow sensing. However, the development of high-performance flexible airflow sensors capable of sensing airflow over large areas remains a challenge. In this work, it is proposed that a hair-like flexible airflow sensor, based on laser direct writing and electrostatic flocking, offers an efficient technology for airflow sensing.
View Article and Find Full Text PDF