Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Emergency percutaneous coronary intervention (PCI) in patients with acute ST-segment elevation myocardial infarction (STEMI) helps to reduce the occurrence of major adverse cardiovascular events (MACEs) such as death, cardiogenic shock, and malignant arrhythmia, but in-hospital MACEs may still occur after emergency PCI, and their mortality is significantly increased once they occur. The aim of this study was to investigate the risk factors associated with MACE during hospitalization after PCI in STEMI patients, construct a nomogram prediction model and evaluate its effectiveness.

Methods: A retrospective analysis of 466 STEMI patients admitted to our hospital from January 2018 to June 2022. According to the occurrence of MACE during hospitalization, they were divided into MACE group ( = 127) and non-MACE group ( = 339), and the clinical data of the two groups were compared; least absolute shrinkage and selection operator (LASSO) regression was used to screen out the predictors with non-zero coefficients, and multivariate Logistic regression was used to analyze STEMI Independent risk factors for in-hospital MACE in patients after emergency PCI; a nomogram model for predicting the risk of in-hospital MACE in STEMI patients after PCI was constructed based on predictive factors, and the C-index was used to evaluate the predictive performance of the prediction model; the Bootstrap method was used to repeat sampling 1,000 Internal validation was carried out for the second time, the Hosmer-Lemeshow test was used to evaluate the model fit, and the calibration curve was drawn to evaluate the calibration degree of the model. Receiver operating characteristic (ROC) curves were drawn to evaluate the efficacy of the nomogram model and thrombolysis in myocardial infarction (TIMI) score in predicting in-hospital MACE in STEMI patients after acute PCI.

Results: The results of LASSO regression showed that systolic blood pressure, diastolic blood pressure, Killip grade II-IV, urea nitrogen and left ventricular ejection fraction (LVEF), IABP, NT-ProBNP were important predictors with non-zero coefficients, and multivariate logistic regression analysis was performed to analyze that Killip grade II-IV, urea nitrogen, LVEF, and NT-ProBNP were independent factors for in-hospital MACE after PCI in STEMI patients; a nomogram model for predicting the risk of in-hospital MACE after PCI in STEMI patients was constructed with the above independent predictors, with a C-index of 0.826 (95% CI: 0.785-0.868) having a good predictive power; the results of H-L goodness of fit test showed χ = 1.3328, = 0.25, the model calibration curve was close to the ideal model, and the internal validation C-index was 0.818; clinical decision analysis also showed that the nomogram model had a good clinical efficacy, especially when the threshold probability was 0.1-0.99, the nomogram model could bring clinical net benefits to patients. The nomogram model predicted a greater AUC (0.826) than the TIMI score (0.696) for in-hospital MACE after PCI in STEMI patients.

Conclusion: Urea nitrogen, Killip class II-IV, LVEF, and NT-ProBNP are independent factors for in-hospital MACE after PCI in STEMI patients, and nomogram models constructed based on the above factors have high predictive efficacy and feasibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9810984PMC
http://dx.doi.org/10.3389/fcvm.2022.1050785DOI Listing

Publication Analysis

Top Keywords

nomogram model
28
stemi patients
28
in-hospital mace
28
pci stemi
20
mace pci
16
model
13
patients acute
12
myocardial infarction
12
factors in-hospital
12
urea nitrogen
12

Similar Publications

Cardiac Biomarkers and Risk Stratification in Liver Transplantation for Acute-on-Chronic Liver Failure: Refining Current Risk Models for Improved Prediction of Post-transplant Mortality.

Anesthesiology

September 2025

Department of Anesthesiology and Pain Medicine, Laboratory for Cardiovascular Dynamics, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul 05505, Republic of Korea.

Background: Cardiovascular complications are the leading cause of mortality following liver transplantation (LT) in patients with acute-on-chronic liver failure (ACLF). However, the extent of cardiac impairment in these patients remains unclear. Current risk models, including the CLIF-C-organ failure (CLIF-C-OF), NACSELD-ACLF, and the novel Sundaram ACLF-LT-mortality (SALT-M) scores primarily focus on blood pressure and the use of cardiovascular drugs, without directly assessing biomarkers of cardiac injury.

View Article and Find Full Text PDF

Utility and performance of cerebrospinal fluid cytology in discriminating central nervous system infections and brain tumors.

J Neurooncol

September 2025

Department of Neurology, Xiangya Hospital, Central South University, No.87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, China.

Background And Objective: Differentiating central nervous system infections (CNSIs) from brain tumors (BTs) is difficult due to overlapping features and the limited individual indicators, and cerebrospinal fluid (CSF) cytology remains underutilized. To improve differential diagnosis, we developed a model based on 9 early, cost-effective cerebrospinal fluid parameters, including CSF cytology.

Methods: Patients diagnosed with CNSIs or BTs at Xiangya Hospital of Central South University between October 1st, 2017 and March 31st, 2024 were enrolled and divided into the training set and the test set.

View Article and Find Full Text PDF

Background: The optimal number of examined lymph nodes (ELN) for accurate staging and prognosis for esophageal cancer patients receiving neoadjuvant therapy remains controversial. This study aimed to evaluate the impact of ELN count on pathologic staging and survival outcomes and to develop a predictive model for lymph node positivity in this patient population.

Methods: Data were extracted from the Surveillance, Epidemiology, and End Results (SEER) database and a multicenter cohort.

View Article and Find Full Text PDF

Background: Postoperative late recurrence (POLAR) after 2 years from the date of surgical resection of hepatocellular carcinoma (HCC) represents a unique surveillance and management challenge. Despite identified risk factors, individualized prediction tools to guide personalized surveillance strategies for recurrence remain scarce. The current study sought to develop a predictive model for late recurrence among patients undergoing HCC resection.

View Article and Find Full Text PDF

Objective: The risk factors of postoperative survival in T4N0M0 NSCLC patients are not fully understood. This study aimed to develop and validate a nomogram model for predicting postoperative survival in patients with T4N0M0 non-small cell lung cancer (NSCLC).

Methods: Clinicopathological data of patients were collected from Surveillance, Epidemiology, and End Results (SEER) database.

View Article and Find Full Text PDF