98%
921
2 minutes
20
To examine the effects of extreme drought event and extreme precipitation event on productivity of ephemeral plant, we experimentally reduced and increased growing season precipitation amounts by 65% across four slope positions and aspects along sand dunes in the southern edge of the Gurbantünggüt Desert. The results showed that extreme drought significantly reduced aboveground net primary productivity (ANPP) and belowground net primary productivity (BNPP) by 48.8% and 13.7%, respectively, and that extreme precipitation significantly increased ANPP and BNPP by 37.9% and 23.2%, respectively. The sensitivity of ANPP (0.26 and 0.21 g·m·mm) to extreme drought and extreme precipitation was significantly higher than that of BNPP (0.02 and 0.03 g·m·mm). In addition, ANPP (24.22 g·m) and BNPP (5.77 g·m) on the east side of sand dune were significantly increased by 29.7% and 71.7% compared with those on the west side. There was no significant difference in the sensitivity of ANPP and BNPP to precipitation change among different slope positions and aspects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13287/j.1001-9332.202212.006 | DOI Listing |
Biochem Biophys Res Commun
September 2025
Department of Biotechnology & Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, H.P., 173234, India. Electronic address:
Abiotic challenges have a major impact on plant growth and development. Recent research has highlighted the role of long non-coding RNAs in response to these environmental stressors. Long non-coding RNAs are transcripts that are usually longer than 200 nucleotides with no potential for coding proteins.
View Article and Find Full Text PDFJ Glob Health
September 2025
Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
Background: Meteorological factors are known to influence the transmission of infectious diseases. Studying historical epidemics in ancient China provides valuable insights into how environmental stressors shaped public health, with implications for modern disease control. We aimed to quantitatively assess the relationship between meteorological events and epidemic severity in China from 674 BC to 1911 AD.
View Article and Find Full Text PDFAoB Plants
October 2025
Instituto de Ecología, Departamento de Ecología de la Biodiversidad, Universidad Nacional Autónoma de México, Campus Hermosillo, Luis Donaldo Colosio s/n, Los Arcos, Hermosillo, Sonora CP 83250, México.
To cope with heat and water stress, evergreen and deciduous species from hot and arid deserts should adjust their stomatal conductance ( ) and leaf water potential (Ψ) regulation in response to changes in soil water availability, high temperatures, and vapour pressure deficits (VPDs). To test whether phenology induces changes in -Ψ coordination, we tested for associations between 14 leaf traits involved in leaf economics, hydraulics, and stomatal regulation, including minimum seasonal water potential (Ψ) and maximum ( ), turgor loss point (Ψ), osmotic potential (Ψ), leaf area (LA), and specific leaf area (SLA), across 12 tree species from the Sonoran Desert with contrasting phenology. We found that foliar phenology, leaf hydraulics, and leaf economic traits are coordinated across species and organized along the axis of physiological efficiency and safety in response to temperature and VPD.
View Article and Find Full Text PDFPLoS Negl Trop Dis
September 2025
Department of Global Health Policy, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
Background: Climate change, leading to more frequent and intense extreme weather events (EWEs), could significantly impact dengue transmission. However, the associations between EWEs and dengue remains underexplored in the Southeast Asia (SEA) region. We investigated the association between selected EWEs (i.
View Article and Find Full Text PDFBiology (Basel)
July 2025
College of Life Sciences, China Jiliang University, Hangzhou 310018, China.
Amphibians are the most threatened vertebrates, yet their resilience in relation to growth and locomotor performance with rising temperatures remains poorly understood. Here, we chose a critically endangered amphibian-the Chinhai spiny newt ()-as the study species and set four water temperature gradients (20 °C, 24 °C, 28 °C, and 32 °C) to simulate climate changes. The thermal performance to climate warming was quantified by measuring morphometric parameters, basal metabolic rate (oxygen consumption rate), and the locomotor performance of Chinhai spiny newt larvae.
View Article and Find Full Text PDF