Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: Artificial intelligence models and networks can learn and process dense information in a short time, leading to an efficient, objective, and accurate clinical and histopathological analysis, which can be useful to improve treatment modalities and prognostic outcomes. This paper targets oral pathologists, oral medicinists, and head and neck surgeons to provide them with a theoretical and conceptual foundation of artificial intelligence-based diagnostic approaches, with a special focus on convolutional neural networks, the state-of-the-art in artificial intelligence and deep learning.

Methods: The authors conducted a literature review, and the convolutional neural network's conceptual foundations and functionality were illustrated based on a unique interdisciplinary point of view.

Conclusion: The development of artificial intelligence-based models and computer vision methods for pattern recognition in clinical and histopathological image analysis of head and neck cancer has the potential to aid diagnosis and prognostic prediction.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jop.13397DOI Listing

Publication Analysis

Top Keywords

convolutional neural
12
artificial intelligence
8
clinical histopathological
8
head neck
8
artificial intelligence-based
8
machine learning
4
learning concepts
4
concepts applied
4
oral
4
applied oral
4

Similar Publications

ResDeepGS: A deep learning-based method for crop phenotype prediction.

Methods

September 2025

School of Computer and Information Engineering, Henan University, Kaifeng, Henan, China; Henan Key Laboratory of Big Data Analysis and Processing, Henan University, Kaifeng, Henan, China. Electronic address:

Genomic selection (GS) is a breeding technique that utilizes genomic markers to predict the genetic potential of crops and animals. This approach holds significant promise for accelerating the improvement of agronomic traits and addressing food security challenges. While traditional breeding methods based on statistical or machine learning techniques have been useful in predicting traits for some crops, they often fail to capture the complex interactions between genotypes and phenotypes.

View Article and Find Full Text PDF

Deep feature extraction and swarm-optimized enhanced extreme learning machine for motor imagery recognition in stroke patients.

J Neurosci Methods

September 2025

Department of Computer Science and Engineering, IIT (ISM) Dhanbad, Dhanbad, 826004, Jharkhand, India. Electronic address:

Background: Interpretation of motor imagery (MI) in brain-computer interface (BCI) applications is largely driven by the use of electroencephalography (EEG) signals. However, precise classification in stroke patients remains challenging due to variability, non-stationarity, and abnormal EEG patterns.

New Methods: To address these challenges, an integrated architecture is proposed, combining multi-domain feature extraction with evolutionary optimization for enhanced EEG-based MI classification.

View Article and Find Full Text PDF

Total hip arthroplasty (THA) is the standard surgical treatment for end-stage hip osteoarthritis, with its success dependent on precise preoperative planning, which, in turn, relies on accurate three-dimensional segmentation and reconstruction of the periarticular bone of the hip joint. However, patients with hip osteoarthritis often exhibit pathological characteristics, such as joint space narrowing, femoroacetabular impingement, osteophyte formation, and joint deformity. These changes present significant challenges for traditional manual or semi-automatic segmentation methods.

View Article and Find Full Text PDF

TATrack: Target-oriented adaptive vision transformer for UAV tracking.

Neural Netw

September 2025

School of Automation, Southeast University, Nanjing, 210096, China; Advanced Ocean Institute of Southeast University Nantong, Nantong, 226010, China. Electronic address:

Unmanned Aerial Vehicle (UAV) tracking requires accurate target localization from aerial top-down perspectives while operating under the computational constraints of aerial platforms. Current mainstream UAV trackers, constrained by the limited resources, predominantly employ lightweight Convolutional Neural Network (CNN) extractor, coupled with an appearance-based fusion mechanism. The absence of comprehensive target perception significantly constrains the balance between tracking accuracy and computational efficiency.

View Article and Find Full Text PDF

To study the impact of pH-responsive labels prepared using traditional and different printing methods on fruit freshness monitoring and preservation, this study firstly optimized coaxial 3D printed labels by analyzing core-shell ratios and infill ratios, and predicted the impact of printing design on functionality of labels via four models. Then, the physicochemical properties of cast, dual-nozzle 3D printed, and coaxial 3D printed labels were compared. Finally, lightweight deep convolutional neural network models were used to enhance early warning intelligence.

View Article and Find Full Text PDF