98%
921
2 minutes
20
During leaf senescence, nitrogen is remobilized and carbon backbones are replenished by amino acid catabolism, with many of the key reactions occurring in mitochondria. The intermediate Δ -pyrroline-5-carboxylate (P5C) is common to some catabolic pathways, thus linking the metabolism of several amino acids, including proline and arginine. Specifically, mitochondrial proline catabolism involves sequential action of proline dehydrogenase (ProDH) and P5C dehydrogenase (P5CDH) to produce P5C and then glutamate. Arginine catabolism produces urea and ornithine, the latter in the presence of α-ketoglutarate being converted by ornithine δ-aminotransferase (OAT) into P5C and glutamate. Metabolic changes during dark-induced leaf senescence (DIS) were studied in Arabidopsis thaliana leaves of Col-0 and in prodh1prodh2, p5cdh and oat mutants. Progression of DIS was followed by measuring chlorophyll and proline contents for 5 days. Metabolomic profiling of 116 compounds revealed similar profiles of Col-0 and oat metabolism, distinct from prodh1prodh2 and p5cdh metabolism. Metabolic dynamics were accelerated in p5cdh by 1 day. Notably, more P5C and proline accumulated in p5cdh than in prodh1prodh2. ProDH1 enzymatic activity and protein amount were significantly down-regulated in p5cdh mutant at Day 4 of DIS. Mitochondrial P5C levels appeared critical in determining the flow through interconnected amino acid remobilization pathways to sustain senescence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.14529 | DOI Listing |
Sci Adv
September 2025
Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA.
Sterols are essential isoprenoid derivatives that contribute to membrane structure and function. In plants, they also serve as precursors to phytohormones and specialized metabolites important for development, defense, and health. Although the sterol biosynthetic pathway is considered well-characterized, we report the discovery of a plant-specific cytochrome -like protein, CB5LP, as a critical component of phytosterol biosynthesis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Biology, Duke University, Durham, NC 27708.
Organisms use circadian clocks to synchronize physiological processes to anticipate the Earth's day-night cycles and regulate responses to environmental signals to gain competitive advantage. While divergent genetic clocks have been studied extensively in bacteria, fungi, plants, and animals, an ancient conserved circadian redox rhythm has been recently reported. However, its biological function and physiological outputs remain elusive.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.
Natural soils are reservoirs of potentially beneficial microbes that can improve plant performance. Here, we isolated 75 bacterial strains from surface-sterilised roots of Arabidopsis thaliana (Arabidopsis) grown in a natural soil derived from an alder swamp. Culture-dependent isolation of individual strains from the roots, followed by monoassociation-based screening, identified seven bacteria that promoted Arabidopsis seedling weight.
View Article and Find Full Text PDFNew Phytol
September 2025
State Key Laboratory for Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA, Zhejiang Key Laboratory of Green Plant Protection, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
Our previous work identified p3-interacting protein (P3IP) as a novel plant factor that interacts with rice stripe virus p3 protein and activates autophagy to mediate its degradation, thereby restricting infection. However, the mechanism of P3IP-mediated autophagy and the evolutionary conservation of its antiviral function remain unknown. This study demonstrates that two Arabidopsis thaliana homologs, AtP3IP and AtP3IPH (Arabidopsis P3IP homologs, AtP3IPs), similarly activate autophagy and confer resistance to turnip mosaic virus (TuMV).
View Article and Find Full Text PDFMol Plant
September 2025
Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland. Electronic address:
In Arabidopsis roots, xylem-pole-pericycle (XPP) cells exhibit dual cell fates by contributing to both lateral root (LR) and cambium formation. Despite the significant progress in understanding these processes individually, the mechanism deciding between these two fates and its contribution on root architecture and secondary growth remain unknown. Here we combined lineage tracing with molecular genetics to study the regulation of fate plasticity of XPP cell lineage.
View Article and Find Full Text PDF