98%
921
2 minutes
20
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1462-2920.16331 | DOI Listing |
Environ Microbiol Rep
October 2025
DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.
Natural soils are reservoirs of potentially beneficial microbes that can improve plant performance. Here, we isolated 75 bacterial strains from surface-sterilised roots of Arabidopsis thaliana (Arabidopsis) grown in a natural soil derived from an alder swamp. Culture-dependent isolation of individual strains from the roots, followed by monoassociation-based screening, identified seven bacteria that promoted Arabidopsis seedling weight.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
Silica nanoparticles (SiONPs), as emerging foliar nanofertilizers, demonstrate promising potential in agriculture. However, whether foliar application of SiONPs alters belowground soil metabolites and microbe composition and abundance remains largely unknown. In this study, 3-week-old cucumber plants were foliar-sprayed with fumed or Stöber SiO NPs dosing at -4 mg of NPs per plant for 5 days.
View Article and Find Full Text PDFBeilstein J Nanotechnol
August 2025
Faculty of Engineering and Technology, Saigon University, 273 An Duong Vuong Street, Cho Quan Ward, Ho Chi Minh City 700000, Vietnam.
This study employs a bibliometric analysis using CiteSpace to explore research trends on the impact of biochar on microplastics (MPs) in soil and water environments. In agricultural soils, MPs reduce crop yield, alter soil properties, and disrupt microbial diversity and nutrient cycling. Biochar, a stable and eco-friendly material, has demonstrated effectiveness in mitigating these effects by restoring soil chemistry, enhancing microbial diversity and improving crop productivity.
View Article and Find Full Text PDFNew Phytol
September 2025
State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.
Microbial nitrate ammonification is a crucial process to retain nitrogen (N) in soils, thereby reducing N loss. Nitrate ammonification has been studied in enrichment and axenic bacterial cultures but so far has been merely ignored in environmental studies. In particular, the capability of arbuscular mycorrhizal fungi (AMF) to regulate nitrate ammonification has not yet been explored.
View Article and Find Full Text PDFEcotoxicol Environ Saf
September 2025
Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental & Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Subtropic Soil and Plant Nutrition, Zhejiang University, Hangzhou 310058, China. Ele
Seven plant growth-promoting bacteria (PGPB) were isolated from extracts of surface-sterilized Sedum alfredii Hance. Among the seven isolates, the strain SaRB5 identified as Stenotrophomonas maltophilia through 16S rDNA sequence analysis, exhibited highest levels of heavy metal resistance and plant growth-promoting traits. SaRB5 tolerated high concentrations of cadmium (Cd) (1.
View Article and Find Full Text PDF