98%
921
2 minutes
20
A heterogenous Palladium anchored Resorcinol-formaldehyde-hyperbranched PEI mesoporous catalyst, made by one-pot synthesis, was used successfully for in situ Suzuki-Miyaura cross coupling synthesis of anticancer prodrug PP-121 from iodoprazole and boronic ester precursors. The mesoporous catalyst with the non-cytotoxic precursors were tested in 2D in vitro model with excellent cytocompatibility and a strong suppression of PC3 cancer cell proliferation, underscored by 50% reduction in PC3 cells viability and 55% reduction in cell metabolism activity and an enhanced rate of early and late apoptosis in flow cytometry, that was induced only by successful in situ pro drug PP121 synthesis from the precursors. The 3D gelatin methacrylate hydrogel encapsulated in vitro cell models underscored the results with a 52% reduction in cell metabolism and underscored apoptosis of PC3 cells when the Pd anchored catalyst was combined with the precursors. In situ application of Suzuki-Miyaura cross coupling of non-cytotoxic precursors to cancer drug, along with their successful encapsulation in an injectable hydrogel could be applied for tumor point drug delivery strategies that can circumvent deleterious side effects and poor bioavailability chemotherapy routes with concomitant enhanced efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9776059 | PMC |
http://dx.doi.org/10.3390/biom12121796 | DOI Listing |
Environ Sci Technol
September 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.
Pd-zeolites are promising passive NO adsorber (PNA) materials for mitigating cold-start emissions from lean-burn engines. However, their practical deployment is constrained by insufficient densities and dispersion of isolated Pd active sites as well as their susceptibility to hydrothermal degradation and phosphorus poisoning encountered in vehicle exhaust environments. Herein, we develop a rationally engineered core-shell Pd/SSZ-13@AlO composite, featuring a Pd/SSZ-13 core encapsulated within a mesoporous AlO shell.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou 215006, P. R. China.
Electrocatalytic CO reduction (eCOR) under acidic conditions is the game changer of resourceful CO utilization owing to the alleviated carbon loss but faces severe competition from the hydrogen evolution reaction (HER) that greatly curtails the electric current efficiency. Leveraging the eCOR side of the teeterboard calls for a fundamental understanding of the triphasic electrode process involving a complex arrangement of electric double layers (EDLs). Herein, a series of model catalysts with tailored cavernous parameters are fabricated to geometrically and spectroscopically decipher the competing HER and eCOR processes that engage different proton sources.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furu-cho, Chikusa-ku, Nagoya 464-8603, Japan.
High-entropy alloys (HEAs) have recently emerged as promising electrocatalysts for complex reactions owing to their tunable electronic structures and diverse, unique binding sites. However, their vast compositional space, in terms of both elemental variety and atomic ratios, presents a major challenge to the rational design of high-performance catalysts, as experimental efforts are often hindered by ambiguous element selection and inefficient trial-and-error methods. In this work, a bottom-up research strategy using machine learning-assisted first-principles calculations was applied to accelerate the design of quinary HEAs toward efficient multielectron transfer reactions.
View Article and Find Full Text PDFSmall
September 2025
School of Chemistry, University of New South Wales, Sydney, 2052, Australia.
Oxygen reduction reaction (ORR) performance of platinum can be improved through alloying transition metals, with L1-PtCo emerging as a standout option due to its balanced catalytic performance, durability, and manufacturability. However, traditional carbon supports often fail to stabilize nanoparticles, leading to performance degradation. This study introduces a mesoporous Co-N-C supported ordered L1-PtCo catalyst to overcome the above limitations.
View Article and Find Full Text PDFSci Rep
August 2025
Department of Chemistry, College of Science, King Faisal University, 31982, Al-Hassa, Saudi Arabia.
This study demonstrates the photocatalytic degradation efficiency of doped NiZnO and co-doped CdNiZnO NPs. Initially, ZnO NPs with a unique mesoporous ellipsoidal morphology were synthesized by simple precipitation and calcination. Powder X-ray diffraction revealed the formation of a hexagonal phase of the wurtzite structure.
View Article and Find Full Text PDF