Neurodevelopmental oscillatory basis of speech processing in noise.

Dev Cogn Neurosci

Laboratoire de Neuroanatomie et Neuroimagerie translationnelles, UNI - ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium; BCBL, Basque Center on Cognition, Brain and Language, San Sebastian, Spain; Laboratory of Neurophysiology and Movement Biomechanics, UNI - ULB N

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Humans' extraordinary ability to understand speech in noise relies on multiple processes that develop with age. Using magnetoencephalography (MEG), we characterize the underlying neuromaturational basis by quantifying how cortical oscillations in 144 participants (aged 5-27 years) track phrasal and syllabic structures in connected speech mixed with different types of noise. While the extraction of prosodic cues from clear speech was stable during development, its maintenance in a multi-talker background matured rapidly up to age 9 and was associated with speech comprehension. Furthermore, while the extraction of subtler information provided by syllables matured at age 9, its maintenance in noisy backgrounds progressively matured until adulthood. Altogether, these results highlight distinct behaviorally relevant maturational trajectories for the neuronal signatures of speech perception. In accordance with grain-size proposals, neuromaturational milestones are reached increasingly late for linguistic units of decreasing size, with further delays incurred by noise.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9792357PMC
http://dx.doi.org/10.1016/j.dcn.2022.101181DOI Listing

Publication Analysis

Top Keywords

speech
6
neurodevelopmental oscillatory
4
oscillatory basis
4
basis speech
4
speech processing
4
noise
4
processing noise
4
noise humans'
4
humans' extraordinary
4
extraordinary ability
4

Similar Publications

Brain activation for language and its relationship to cognitive and linguistic measures.

Cereb Cortex

August 2025

Faculty of Psychology and Education Science, Department of Psychology, University of Geneva, Chemin des Mines 9, Geneva, 1202, Switzerland.

Language learning and use relies on domain-specific, domain-general cognitive and sensory-motor functions. Using fMRI during story listening and behavioral tests, we investigated brain-behavior associations between linguistic and non-linguistic measures in individuals with varied multilingual experience and reading skills, including typical reading participants (TRs) and dyslexic readers (DRs). Partial Least Square Correlation revealed a main component linking cognitive, linguistic, and phonological measures to amodal/associative brain areas.

View Article and Find Full Text PDF

Psychoacoustic assessment of misophonia.

JASA Express Lett

September 2025

Department of Audiology and Speech-Language Pathology, University of North Texas, Denton, Texas 76201,

Misophonia is a condition characterized by intense negative emotional reactions to trigger sounds and related stimuli. In this study, adult listeners (N = 15) with a self-reported history of misophonia symptoms and a control group without misophonia (N = 15) completed listening judgements of recorded misophonia trigger stimuli using a standard scale. Participants also completed an established questionnaire of misophonia symptoms, the Misophonia Questionnaire (MQ).

View Article and Find Full Text PDF

Deep Learning-Assisted Organogel Pressure Sensor for Alphabet Recognition and Bio-Mechanical Motion Monitoring.

Nanomicro Lett

September 2025

Nanomaterials & System Lab, Major of Mechatronics Engineering, Faculty of Applied Energy System, Jeju National University, Jeju, 63243, Republic of Korea.

Wearable sensors integrated with deep learning techniques have the potential to revolutionize seamless human-machine interfaces for real-time health monitoring, clinical diagnosis, and robotic applications. Nevertheless, it remains a critical challenge to simultaneously achieve desirable mechanical and electrical performance along with biocompatibility, adhesion, self-healing, and environmental robustness with excellent sensing metrics. Herein, we report a multifunctional, anti-freezing, self-adhesive, and self-healable organogel pressure sensor composed of cobalt nanoparticle encapsulated nitrogen-doped carbon nanotubes (CoN CNT) embedded in a polyvinyl alcohol-gelatin (PVA/GLE) matrix.

View Article and Find Full Text PDF

Recessive variants in TWNK cause syndromic and non-syndromic post-synaptic auditory neuropathy through MtDNA replication defects.

Hum Genet

September 2025

College of Otolaryngology Head and Neck Surgery, Chinese PLA General Hospital, Chinese PLA Medical School, 28 Fuxing Road, Beijing, 100853, China.

Recessive variants in TWNK cause syndromes arising from mitochondrial DNA (mtDNA) depletion. Hearing loss is the most prevalent manifestation in individuals with these disorders. However, the clinical and pathophysiological features have not been fully elucidated.

View Article and Find Full Text PDF

Vocal tract contribution to vocal intensity: Interaction between vocal fold adduction, formant tuning, and fundamental frequency.

J Acoust Soc Am

September 2025

Department of Head and Neck Surgery, University of California, Los Angeles, 31-24 Rehab Center, 1000 Veteran Avenue, Los Angeles, California 90095-1794, USA.

The goal of this study was to understand the interaction between the voice source spectral shape, formant tuning, and fundamental frequency in determining the vocal tract contribution to vocal intensity. Computational voice simulations were performed with parametric variations in both vocal fold and vocal tract configurations. The vocal tract contribution to vocal intensity was quantified as the difference in the A-weighted sound pressure level between the radiated sound pressure and the sound pressure at the glottis.

View Article and Find Full Text PDF