Publications by authors named "Marc Vander Ghinst"

Altered neuromuscular strategies are suggested to contribute to age-related decreases in postural stability. Current approaches tend to overlook global (whole body) neuromuscular postural control strategies, potentially due to methodological constraints or residual influence from a longstanding, but outdated, biomechanical view in which postural sway is represented by a single-jointed inverted pendulum. In this study, we investigate age-related differences in postural strategies during upright static balance maintenance by assessing global neuromuscular control.

View Article and Find Full Text PDF

The oscillatory nature of intrinsic brain networks is largely taken for granted in the systems neuroscience community. However, the hypothesis that brain rhythms-and by extension transient bursting oscillations-underlie functional networks has not been demonstratedElectrophysiological measures of functional connectivity are indeed affected by the power bias, which may lead to artefactual observations of spectrally specific network couplings not genuinely driven by neural oscillations, bursting or not. We investigate this crucial question by introducing a unique combination of a rigorous mathematical analysis of the power bias in frequency-dependent amplitude connectivity with a neurobiologically informed model of cerebral background noise based on hidden Markov modeling of resting-state magnetoencephalography (MEG).

View Article and Find Full Text PDF

Background: Vision is commonly reported to play a crucial role in postural control and even more so in advancing age. Among its functions, visual motion perception provides the brain with information about self-motion and the motion of the surrounding environment.

Objectives: To clarify the nature of the relationship between visual motion acuity and postural control and its modulation with age.

View Article and Find Full Text PDF
Article Synopsis
  • Maintaining balance requires the brain to integrate information from visual, vestibular, and proprioceptive systems to adjust posture effectively.
  • The study investigates whether cerebral cortex activity is linked to postural sways during balance tasks, revealing that cortico-kinematic coherence (CKC) exists in the brain's oscillations when standing.
  • Findings show that the brain monitors center-of-pressure (CoP) variations and controls balance actively, making CKC a potential indicator of how the brain supports stability, particularly when sensory information is altered.
View Article and Find Full Text PDF

Rationale: Cortical activity is coupled with streams of sensory stimulation. The coupling with the temporal envelope of heard speech is known as the cortical tracking of speech (CTS), and that with movement kinematics is known as the corticokinematic coupling (CKC). Simultaneous measurement of both couplings is desirable in clinical settings, but it is unknown whether the inherent dual-tasking condition has an impact on CTS or CKC.

View Article and Find Full Text PDF

While the simultaneous degradation of muscle composition and postural stability in aging are independently highly investigated due to their association with fall risk, the interplay between the two has received little attention. Thus, the purpose of this study is to explore how age-related changes in muscle composition relate to postural stability. To that aim, we collected posturography measures and ultrasound images of the dominant Vastus Lateralis and Biceps Brachii from 32 young (18-35 year old) and 34 older (65-85 year old) participants.

View Article and Find Full Text PDF

Nose-to-brain delivery is a promising way to improve the treatment of central nervous system disorders, as it allows the bypassing of the blood-brain barrier. However, it is still largely unknown how the anatomy of the nose can influence the treatment outcome. In this work, we used 3D printing to produce nasal replicas based on 11 different CT scans presenting various anatomical features.

View Article and Find Full Text PDF

Humans' extraordinary ability to understand speech in noise relies on multiple processes that develop with age. Using magnetoencephalography (MEG), we characterize the underlying neuromaturational basis by quantifying how cortical oscillations in 144 participants (aged 5-27 years) track phrasal and syllabic structures in connected speech mixed with different types of noise. While the extraction of prosodic cues from clear speech was stable during development, its maintenance in a multi-talker background matured rapidly up to age 9 and was associated with speech comprehension.

View Article and Find Full Text PDF

Children have more difficulty perceiving speech in noise than adults. Whether this difficulty relates to an immature processing of prosodic or linguistic elements of the attended speech is still unclear. To address the impact of noise on linguistic processing per se, we assessed how babble noise impacts the cortical tracking of intelligible speech devoid of prosody in school-aged children and adults.

View Article and Find Full Text PDF

As humans, we seamlessly hold objects in our hands, and may even lose consciousness of these objects. This phenomenon raises the unsettled question of the involvement of the cerebral cortex, the core area for voluntary motor control, in dynamically maintaining steady muscle force. To address this issue, we measured magnetoencephalographic brain activity from healthy adults who maintained a steady pinch grip.

View Article and Find Full Text PDF

Dyslexia is a frequent developmental disorder in which reading acquisition is delayed and that is usually associated with difficulties understanding speech in noise. At the neuronal level, children with dyslexia were reported to display abnormal cortical tracking of speech (CTS) at phrasal rate. Here, we aimed to determine if abnormal tracking relates to reduced reading experience, and if it is modulated by the severity of dyslexia or the presence of acoustic noise.

View Article and Find Full Text PDF

Impaired speech perception in noise despite normal peripheral auditory function is a common problem in young adults. Despite a growing body of research, the pathophysiology of this impairment remains unknown. This magnetoencephalography study characterizes the cortical tracking of speech in a multi-talker background in a group of highly selected adult subjects with impaired speech perception in noise without peripheral auditory dysfunction.

View Article and Find Full Text PDF

Humans' propensity to acquire literacy relates to several factors, including the ability to understand speech in noise (SiN). Still, the nature of the relation between reading and SiN perception abilities remains poorly understood. Here, we dissect the interplay between (1) reading abilities, (2) classical behavioral predictors of reading (phonological awareness, phonological memory, and rapid automatized naming), and (3) electrophysiological markers of SiN perception in 99 elementary school children (26 with dyslexia).

View Article and Find Full Text PDF

Functional magnetic resonance imaging (fMRI) allowed the spatial characterization of the resting-state verbal language network (vLN). While other resting-state networks (RSNs) were matched with their electrophysiological equivalents at rest and could be spectrally defined, such correspondence is lacking for the vLN. This magnetoencephalography (MEG) study aimed at defining the spatio-spectral characteristics of the neuromagnetic intrinsic functional architecture of the vLN.

View Article and Find Full Text PDF

Discrimination of words from nonspeech sounds is essential in communication. Still, how selective attention can influence this early step of speech processing remains elusive. To answer that question, brain activity was recorded with magnetoencephalography in 12 healthy adults while they listened to two sequences of auditory stimuli presented at 2.

View Article and Find Full Text PDF

Objective: Patients with Early Infantile Epileptic Encephalopathy (EIEE) 52 have inherited, homozygous variants in the gene SCN1B, encoding the voltage-gated sodium channel (VGSC) β1 and β1B non-pore-forming subunits.

Methods: Here, we describe the detailed electroclinical features of a biallelic SCN1B patient with a previously unreported variant, p.Arg85Cys.

View Article and Find Full Text PDF

The human brain is functionally organized into large-scale neural networks that are dynamically interconnected. Multiple short-lived states of resting-state functional connectivity (rsFC) identified transiently synchronized networks and cross-network integration. However, little is known about the way brain couplings covary as rsFC states wax and wane.

View Article and Find Full Text PDF

In multitalker backgrounds, the auditory cortex of adult humans tracks the attended speech stream rather than the global auditory scene. Still, it is unknown whether such preferential tracking also occurs in children whose speech-in-noise (SiN) abilities are typically lower compared with adults. We used magnetoencephalography (MEG) to investigate the frequency-specific cortical tracking of different elements of a cocktail party auditory scene in 20 children (age range, 6-9 years; 8 females) and 20 adults (age range, 21-40 years; 10 females).

View Article and Find Full Text PDF

During connected speech listening, brain activity tracks speech rhythmicity at delta (∼0.5 Hz) and theta (4-8 Hz) frequencies. Here, we compared the potential of magnetoencephalography (MEG) and high-density electroencephalography (EEG) to uncover such speech brain tracking.

View Article and Find Full Text PDF

Unlabelled: Using a continuous listening task, we evaluated the coupling between the listener's cortical activity and the temporal envelopes of different sounds in a multitalker auditory scene using magnetoencephalography and corticovocal coherence analysis. Neuromagnetic signals were recorded from 20 right-handed healthy adult humans who listened to five different recorded stories (attended speech streams), one without any multitalker background (No noise) and four mixed with a "cocktail party" multitalker background noise at four signal-to-noise ratios (5, 0, -5, and -10 dB) to produce speech-in-noise mixtures, here referred to as Global scene. Coherence analysis revealed that the modulations of the attended speech stream, presented without multitalker background, were coupled at ∼0.

View Article and Find Full Text PDF

Objectives: There is a classical distinction based on clinical criteria between acquired and congenital cholesteatomas. To determine if these two types of lesions show different immunohistochemical features, we have studied the expression patterns of three distinctive galectins (animal lectins implied especially in cellular proliferation and apoptosis) in both types of cholesteatomas and compared it to their expression patterns in external auditory canal skin.

Methods: Our study is based on nine acquired and eight congenital cholesteatomas, obtained from children during ear surgery.

View Article and Find Full Text PDF