98%
921
2 minutes
20
The constant rise in energy demands, costs, and concerns about global warming has created a demand for new renewable alternative fuels that can be produced sustainably. Lignocellulose biomass can act as an excellent energy source and various value-added compounds like xylitol. In this research study, we have explored the xylose reductase that was obtained from the genome of a thermophilic fungus while searching for an enzyme to convert xylose to xylitol at higher temperatures. The recombinant thermostable TtXR histidine-tagged fusion protein was expressed in and successfully purified for the first time. Further, it was characterized for its function and novel structure at varying temperatures and pH. The enzyme showed maximal activity at 7.0 pH and favored d-xylose over other pentoses and hexoses. Biophysical approaches such as ultraviolet-visible (UV-visible), fluorescence spectrometry, and far-UV circular dichroism (CD) spectroscopy were used to investigate the structural integrity of pure TtXR. This research highlights the potential application of uncharacterized xylose reductase as an alternate source for the effective utilization of lignocellulose in fermentation industries at elevated temperatures. Moreover, this research would give environment-friendly and long-term value-added products, like xylitol, from lignocellulosic feedstock for both scientific and commercial purposes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9730754 | PMC |
http://dx.doi.org/10.1021/acsomega.2c05690 | DOI Listing |
FEBS J
September 2025
AgResearch Ltd., Grasslands, Palmerston North, New Zealand.
Epimerases and dehydratases are widely studied members of the extended short-chain dehydrogenase/reductase (SDR) enzyme superfamily and are important in nucleotide sugar conversion and diversification, for example, the interconversion of uridine diphosphate (UDP)-linked glucose and galactose. Methanothermobacter thermautotrophicus contains a cluster of genes, the annotations of which indicate involvement in glycan biosynthesis such as that of cell walls or capsular polysaccharides. In particular, genes encoding UDP-glucose 4-epimerase related protein (Mth375), UDP-glucose 4-epimerase homologue (Mth380) and dTDP-glucose 4,6-dehydratase related protein (Mth373) may be involved in the biosynthesis of an unusual aminosugar in pseudomurein.
View Article and Find Full Text PDFBioresour Technol
August 2025
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China; University of Science and Technology of China, Hefei 230026, China. Electr
Xylitol, a high-value five-carbon sugar alcohol, is conventionally produced from xylose derived from lignocellulosic biomass. However, traditional chemical hydrogenation methods are energy-intensive, while microbial fermentation often requires co-substrates, limiting sustainability. This study explored a novel approach: xylitol biosynthesis by Chlorella sorokiniana under light and co-substrate synergistically driven (LCSD) conditions, aiming to overcome these limitations.
View Article and Find Full Text PDFMolecules
August 2025
Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politcnico Nacional, Plan de San Luis y Salvador Díaz Mirón s/n, Casco de Santo Tomás, Miguel Hidalgo, Mexico City 11340, Mexico.
Type 2 diabetes is a multifactorial disease characterized by chronic hyperglycemia, insulin resistance, oxidative stress, inflammation, and dyslipidemia, factors that contribute to the development of long-term complications. In this context, the 2-aminobenzothiazole scaffold has emerged as a promising candidate due to its broad spectrum of biological properties. In this study, we performed a multidisciplinary evaluation of benzothiazole derivatives (-, -, -, and -), starting with the in silico prediction of their properties, along with molecular docking against aldose reductase (ALR2) and peroxisome proliferator-activated receptor gamma (PPAR-γ).
View Article and Find Full Text PDFFEBS J
August 2025
School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
Aldehyde deformylating oxygenase (ADO) plays a crucial role in hydrocarbon biosynthesis by converting C fatty aldehydes into C alkanes, key components of biofuels. However, ADO's low catalytic efficiency and thermostability hinder its industrial application. In this study, we identified a novel ADO from Pseudomonas plecoglossicida (PsADO) using the Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST).
View Article and Find Full Text PDFBiotechnol Bioeng
August 2025
College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
Citronellal and citronellol are monoterpenoids that serve as key ingredients in the flavor and fragrance industry and hold significant potential for pharmaceutical applications. Currently, these compounds are primarily obtained through chemical synthesis or extraction from plant essential oils. However, these methods raise concerns regarding environmental sustainability, carbon emissions, and the growing attentions for natural production.
View Article and Find Full Text PDF