98%
921
2 minutes
20
Diterpenoids are considered the major bioactive components in to treat cancer and inflammation, but few comprehensive profiling studies of diterpenoids have been reported. Herein, a stepwise diagnostic product ions (DPIs) filtering strategy for efficient and targeted profiling of diterpenoids in was developed using UHPLC-Q-Exactive-Orbitrap-MS. After UHPLC-HRMS/MS analysis of six diterpenoid reference standards, fragmentation behaviors of these references were studied to provide DPIs. Then, stepwise DPIs filtering aimed to reduce the potential interferences of matrix ions and achieve more chromatographic peaks was conducted to rapidly screen the diterpenoids. The results demonstrated that stepwise DPIs were capable of simplifying the workload in data post-processing and the effective acquisition of low abundance compounds. Subsequently, DPIs and MS/MS fragment patterns were adopted to identify the targeted diterpenoids. As a result, 381 diterpenoids were unambiguously or tentatively identified, while 141 of them with completely new molecular weights were potential new diterpenoids for . These results demonstrate that the developed stepwise DPIs filtering method could be employed as an efficient, reliable, and valuable strategy to screen and identify the diterpenoid profile in . This might accelerate and simplify target constituent profiling from traditional Chinese medicine (TCM) extracts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736491 | PMC |
http://dx.doi.org/10.3390/molecules27238185 | DOI Listing |
J Pharm Anal
October 2024
National Key Laboratory of Chinese Medicine Modernization, State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
Identifying the compound formulae-related xenobiotics in bio-samples is full of challenges. Conventional strategies always exhibit the insufficiencies in overall coverage, analytical efficiency, and degree of automation, and the results highly rely on the personal knowledge and experience. The goal of this work was to establish a software-aided approach, by integrating ultra-high performance liquid chromatography/ion-mobility quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) and in-house high-definition MS library, to enhance the identification of prototypes and metabolites of the compound formulae , taking Sishen formula (SSF) as a template.
View Article and Find Full Text PDFAnal Bioanal Chem
June 2024
School of Pharmacy, Shenyang Pharmaceutical University, No.26 Huatuo Rd, High & New Tech Development Zone, Benxi, Liaoning Province, 117004, People's Republic of China.
Epimedium-Rhizoma drynariae (EP-RD) was a well-known herb commonly used to treat bone diseases in traditional Chinese medicine. Nevertheless, there was incomplete pharmacokinetic behavior, metabolic conversion and chemical characterization of EP-RD in vivo. Therefore, this study aimed to establish metabolic profiles combined with multicomponent pharmacokinetics to reveal the in vivo behavior of EP-RD.
View Article and Find Full Text PDFExpert Opin Drug Deliv
March 2024
cystetic Medicines, Inc, San Carlos, CA, USA.
Introduction: Up to 50% of asthma/COPD patients make critical errors in dose preparation and dose inhalation with current marketed DPIs which negatively impact clinical outcomes. Others fail to adhere to their chronic treatment regimen.
Areas Covered: For this review, we describe how a human-factors approach to design of a dry powder inhaler can be used to improve usability, proficiency, and functionality of DPIs, while effectively mitigating critical errors associated with DPIs.
J Aerosol Med Pulm Drug Deliv
April 2023
Applied Particle Principles, LLC, Hamilton, Virginia, USA.
Measurement of aerodynamic particle size distribution, a clinically relevant attribute of inhalable drug products, involves multistage cascade impactors and is tedious and expensive. A leading candidate for a quicker method is the reduced NGI™ (rNGI). This method involves placing glass fiber filters on top of the nozzles of a chosen NGI stage, selected often to collect all particles with an aerodynamic diameter smaller than approximately five microns.
View Article and Find Full Text PDFMolecules
November 2022
School of Pharmacy, Binzhou Medical University, Yantai 264003, China.
Diterpenoids are considered the major bioactive components in to treat cancer and inflammation, but few comprehensive profiling studies of diterpenoids have been reported. Herein, a stepwise diagnostic product ions (DPIs) filtering strategy for efficient and targeted profiling of diterpenoids in was developed using UHPLC-Q-Exactive-Orbitrap-MS. After UHPLC-HRMS/MS analysis of six diterpenoid reference standards, fragmentation behaviors of these references were studied to provide DPIs.
View Article and Find Full Text PDF