Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Morphine, a commonly used antinociceptive drug in hospitals, is known to cross the blood-brain barrier (BBB) by first passing through brain endothelial cells. Despite its pain-relieving effect, morphine also has detrimental effects, such as the potential induction of redox imbalance in the brain. However, there is still insufficient evidence of these effects on the brain, particularly on the brain endothelial cells and the extracellular vesicles that they naturally release. Indeed, extracellular vesicles (EVs) are nanosized bioparticles produced by almost all cell types and are currently thought to reflect the physiological state of their parent cells. These vesicles have emerged as a promising source of biomarkers by indicating the functional or dysfunctional state of their parent cells and, thus, allowing a better understanding of the biological processes involved in an adverse state. However, there is very little information on the morphine effect on human brain microvascular endothelial cells (HBMECs), and even less on their released EVs. Therefore, the current study aimed at unraveling the detrimental mechanisms of morphine exposure (at 1, 10, 25, 50 and 100 µM) for 24 h on human brain microvascular endothelial cells as well as on their associated EVs. Isolation of EVs was carried out using an affinity-based method. Several orthogonal techniques (NTA, western blotting and proteomics analysis) were used to validate the EVs enrichment, quality and concentration. Data-independent mass spectrometry (DIA-MS)-based proteomics was applied in order to analyze the proteome modulations induced by morphine on HBMECs and EVs. We were able to quantify almost 5500 proteins in HBMECs and 1500 proteins in EVs, of which 256 and 148, respectively, were found to be differentially expressed in at least one condition. Pathway enrichment analysis revealed that the "cell adhesion and extracellular matrix remodeling" process and the "HIF1 pathway", a pathway related to oxidative stress responses, were significantly modulated upon morphine exposure in HBMECs and EVs. Altogether, the combination of proteomics and bioinformatics findings highlighted shared pathways between HBMECs exposed to morphine and their released EVs. These results put forward molecular signatures of morphine-induced toxicity in HBMECs that were also carried by EVs. Therefore, EVs could potentially be regarded as a useful tool to investigate brain endothelial cells dysfunction, and to a different extent, the BBB dysfunction in patient circulation using these "signature pathways".

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9741159PMC
http://dx.doi.org/10.3390/cells11233926DOI Listing

Publication Analysis

Top Keywords

endothelial cells
24
extracellular vesicles
12
morphine exposure
12
human brain
12
brain microvascular
12
microvascular endothelial
12
brain endothelial
12
evs
11
oxidative stress
8
extracellular matrix
8

Similar Publications

Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.

View Article and Find Full Text PDF

Angiosarcoma is a rare type of soft-tissue sarcoma, constituting only 1% out of all soft-tissue sarcomas pathologically originating from lymphatic or vascular endothelial cells. Angiosarcomas are reported to be very aggressive with a high incidence of metastases to different sites; therefore, it is very important to determine disease extension and detect local recurrence and/or distant metastases for appropriate management. We report a case of a 55-year-old Indian male who presented with soft-tissue thickening of the left cheek for which biopsy revealed angiosarcoma and was referred for fludeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) to assess the extent of disease highlighting the potential role of FDG PET/CT in rare malignancies like angiosarcomas.

View Article and Find Full Text PDF

Protein kinase C and endothelial dysfunction in select vascular diseases.

Front Cardiovasc Med

August 2025

Department of Surgery, Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.

Protein kinases have crucial roles in intracellular signal transduction pathways that affect a wide range of biochemical processes, including apoptosis, metabolism, proliferation, and protein synthesis. Vascular endothelial cells are important regulators of vasomotor tone, tissue/organ perfusion, and inflammation. Since its discovery in the late 1970s, a growing body of literature implicates protein kinase C (PKC) in pathways involving angiogenesis, endothelial permeability, microvascular tone, and endothelial activation.

View Article and Find Full Text PDF

Acute kidney injury (AKI) is a common clinical syndrome characterized by abnormal renal function and structure. Microcirculatory perfusion disorders and inflammatory responses are critical pathophysiologies of AKI. Recently, ultrasound molecular imaging has been considered a valuable tool for preclinical and clinical diagnostics that can sensitively target histological structures of interest, particularly in evaluating renal microcirculation.

View Article and Find Full Text PDF

This study aimed to develop an acellular dermal matrix derived from tilapia skin and evaluate its potential as a bioscaffold for skin wound repair. Structural and compositional changes before and after decellularisation were assessed through histological staining, electron microscopy and immunological analysis. The matrix exhibited low immunogenicity, preserved extracellular matrix architecture and retained key bioactive components.

View Article and Find Full Text PDF