Publications by authors named "Domitille Schvartz"

Proteomic and transcriptomic analyses of cerebrospinal fluid (CSF)-derived extracellular vesicles (EVs) offer unique insights into molecular changes associated with central nervous system (CNS) diseases and may result in biomarker identification. No gold standard method to enrich EVs from CSF has been established, and head-to-head comparisons of outputs of different protocols are scarce. Using a large pool of CSF, we characterised the EV preparations resulting from four enrichment protocols and compared them in terms of yield and purity.

View Article and Find Full Text PDF

Managing acute stroke is challenging and requires the differentiation of stroke subtypes while excluding stroke mimics. Understanding the biological processes underlying the different stroke subtypes could help improve acute stroke care and patient outcomes. Plasma-derived extracellular vesicles (EVs) have emerged as promising tools for investigating these processes through their unique cargo.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most frequent and aggressive primary brain cancer. The Src inhibitor, TAT-Cx43, exerts antitumor effects in in vitro and in vivo models of GBM. Because addressing the mechanism of action is essential to translate these results to a clinical setting, in this study we carried out an unbiased proteomic approach.

View Article and Find Full Text PDF

Background: Knowledge about lung development or lung disease is mainly derived from data extrapolated from mouse models. This has obvious drawbacks in developmental diseases, particularly due to species differences. Our objective is to describe the development of complementary analysis methods that will allow a better understanding of the molecular mechanisms involved in the pathogenesis of rare congenital diseases.

View Article and Find Full Text PDF
Article Synopsis
  • Plasmodium parasites, specifically Plasmodium berghei, go through different developmental phases in both humans and mosquitoes, with ubiquitination playing a crucial, yet under-researched, role in their biology.
  • The study identifies a conserved SCF complex (SKP1/Cullin1/FBXO1) that is vital for processes like cell division and the development of gametes, influencing how the parasites move from one host to another.
  • Through ubiquitinomic analysis, the research highlights a network of proteins regulated by FBXO1 that are key for the parasite's lifecycle, demonstrating a complex interaction between ubiquitination and phosphorylation that affects the parasite's survival and reproduction in its hosts.
View Article and Find Full Text PDF

Morphine, a commonly used antinociceptive drug in hospitals, is known to cross the blood-brain barrier (BBB) by first passing through brain endothelial cells. Despite its pain-relieving effect, morphine also has detrimental effects, such as the potential induction of redox imbalance in the brain. However, there is still insufficient evidence of these effects on the brain, particularly on the brain endothelial cells and the extracellular vesicles that they naturally release.

View Article and Find Full Text PDF

The myristoylated pentapeptide, L-R5, contains an amino acid sequence of the zeta inhibitory peptide (ZIP) portion (pseudosubstrate) of protein kinase C zeta (PKC ζ). As PKC ζ is involved in the modulation of epithelial tight junctions (TJs) through the phosphorylation of TJ proteins, L-R5 was suggested to interact with the enzyme resulting in the enhancement of paracellular permeability. This study shows that L-R5 does not bind to the enzyme but interacts directly with TJ proteins.

View Article and Find Full Text PDF

Astrocyte reaction is a complex cellular process involving astrocytes in response to various types of CNS injury and a marker of neurotoxicity. It has been abundantly studied in rodents but relatively poorly in human cells due to limited access to the brain. Astrocytes play important roles in cerebral energy metabolism and are also key players in neuroinflammation.

View Article and Find Full Text PDF

Morphine is one of the most potent opioid analgesic used for pain treatment. Morphine action in the central nervous system requires crossing the blood-brain barrier. Due to the controversial relationship between morphine and oxidative stress, the potential pro- or antioxidant effects of morphine in the blood-brain barrier is important to be understood, as oxidative stress could cause its disruption and predispose to neurodegenerative diseases.

View Article and Find Full Text PDF

Despite Paraquat (PQ) being banned in several countries, it is still one of the most commonly used herbicides in agriculture. This compound is known to induce damaging effects on human and animal brain cells by generating Reactive Oxygen Species (ROS). However, there is few evidence of PQ effect on Human Brain Microvascular Endothelial Cells (HBMECs), one of the major component of the Blood-Brain Barrier (BBB).

View Article and Find Full Text PDF

Over the last decade, the knowledge in extracellular vesicles (EVs) biogenesis and modulation has increasingly grown. As their content reflects the physiological state of their donor cells, these "intercellular messengers" progressively became a potential source of biomarker reflecting the host cell state. However, little is known about EVs released from the human brain microvascular endothelial cells (HBMECs).

View Article and Find Full Text PDF

Because of its ability to generate biological hypotheses, metabolomics offers an innovative and promising approach in many fields, including clinical research. However, collecting specimens in this setting can be difficult to standardize, especially when groups of patients with different degrees of disease severity are considered. In addition, despite major technological advances, it remains challenging to measure all the compounds defining the metabolic network of a biological system.

View Article and Find Full Text PDF

Astrogliosis has been abundantly studied in rodents but relatively poorly in human cells due to limited access to the brain. Astrocytes play important roles in cerebral energy metabolism, and are also key players in neuroinflammation. Astroglial metabolic and inflammatory changes as a function of age have been reported, leading to the hypothesis that mitochondrial metabolism and inflammatory responses are interconnected in supporting a functional switch of astrocytes from neurotrophic to neurotoxic.

View Article and Find Full Text PDF

Osteogenesis imperfecta (OI) is a heritable disorder that mainly affects the skeleton. The inheritance is mostly autosomal dominant and associated to mutations in one of the two genes, and , encoding for the type I collagen α chains. According to more than 1500 described mutation sites and to outcome spanning from very mild cases to perinatal-lethality, OI is characterized by a wide genotype/phenotype heterogeneity.

View Article and Find Full Text PDF

Olfactory dysfunction is one of the prodromal symptoms in dementia with Lewy bodies (DLB). However, the molecular pathogenesis associated with decreased smell function remains largely undeciphered. We generated quantitative proteome maps to detect molecular alterations in olfactory bulbs (OB) derived from DLB subjects compared to neurologically intact controls.

View Article and Find Full Text PDF

: Although the hepatotoxicity of acetaminophen is a well-known problem, the search for reliable biomarker of toxicity is still a current issue as clinical tools are missing to assess patients intoxicated following chronic use, sequential ingestion, use of modified release formulations or in case of delayed arrival to hospital. The need for new specific and robust biomarkers for acetaminophen toxicity has prompted many studies exploring the use of blood levels of acetaminophen derivatives, mitochondrial damage markers, liver cell apoptosis and/or necrosis markers and circulating microRNAs. : In this review, we present a concise overview of the most promising biomarkers currently under evaluation including descriptions of their properties with respect to exposure type, APAP specificity, and potential clinical application.

View Article and Find Full Text PDF

Trimethyltin is an organometallic compound, described to be neurotoxic and to trigger neuroinflammation and oxidative stress. Previous studies associated TMT with the perturbation of mitochondrial function, or neurotransmission. However, the mechanisms of toxicity may differ depending on the duration of exposure and on the stage of maturation of brain cells.

View Article and Find Full Text PDF

Toxicology studies can take advantage of approaches to better understand the phenomena underlying the phenotypic alterations induced by different types of exposure to certain toxicants. Nevertheless, in order to analyse the data generated from multifactorial studies, dedicated data analysis tools are needed. In this work, we propose a new workflow comprising both factor deconvolution and data integration from multiple analytical platforms.

View Article and Find Full Text PDF

Mild olfactory dysfunction has been observed in frontotemporal dementias (FTD). However, the underlying molecular mechanisms associated to this deficit are poorly understood. We applied quantitative proteomics to analyze pathological effects on the olfactory bulb (OB) from progressive supranuclear palsy (PSP) and frontotemporal lobar degeneration (FTLD-TDP43) subjects respect to elderly non-FTD group.

View Article and Find Full Text PDF

The success of malignant tumors is conditioned by the intercellular communication between tumor cells and their microenvironment, with extracellular vesicles (EVs) acting as main mediators. While the value of 3D conditions to study tumor cells is well established, the impact of cellular architecture on EV content and function is not investigated yet. Here, a recently developed 3D cell culture microwell array is adapted for EV production and a comprehensive comparative analysis of biochemical features, RNA and proteomic profiles of EVs secreted by 2D vs 3D cultures of gastric cancer cells, is performed.

View Article and Find Full Text PDF

The quantitative proteomics data reported here pertain to the research article entitled "A Tandem Mass Tag (TMT) proteomic analysis during the early phase of experimental pancreatitis reveals new insights in the disease pathogenesis" (García-Hernández et al., 2018) [1]. The development of acute pancreatitis (AP, an important pathological inflammatory state of the exocrine pancreas) would be based on early changes in protein expression and signaling pathways whose unmasking would be crucial for deciphering AP at the molecular level.

View Article and Find Full Text PDF

In obese children with high circulating concentrations of free fatty acid palmitate, we have observed that insulin levels at fasting and in response to a glucose challenge were several times higher than in obese children with low concentrations of the fatty acid as well as in lean controls. Declining and even insufficient insulin levels were observed in obese adolescents with high levels of the fatty acid. In isolated human islets exposed to palmitate we have observed insulin hypersecretion after 2 days exposure.

View Article and Find Full Text PDF

Unlabelled: Changes in the protein expression occurring within the initiation phase of acute pancreatitis (AP) might be vital in the development of this complex disease. However, the exact mechanisms involved in the onset of AP remains elusive and most of our knowledge about the pathobiology of AP comes from animal models. We performed in a rat pancreatitic model a high-throughput shotgun proteomic profiling of the soluble and whole membrane fractions from the pancreas during the early phase of cerulein (Cer)-induced AP.

View Article and Find Full Text PDF

Studies on the pathophysiology of type 2 diabetes mellitus (T2DM) have linked the accumulation of lipid metabolites to the development of beta-cell dysfunction and impaired insulin secretion. In most in vitro models of T2DM, rodent islets or beta-cell lines are used and typically focus is on specific cellular pathways or organs. Our aim was to, firstly, develop a combined lipidomics and proteomics approach for lipotoxicity in isolated human islets and, secondly, investigate if the approach could delineate novel and/ or confirm reported mechanisms of lipotoxicity.

View Article and Find Full Text PDF