A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

An Integrative Multi-Omics Workflow to Address Multifactorial Toxicology Experiments. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Toxicology studies can take advantage of approaches to better understand the phenomena underlying the phenotypic alterations induced by different types of exposure to certain toxicants. Nevertheless, in order to analyse the data generated from multifactorial studies, dedicated data analysis tools are needed. In this work, we propose a new workflow comprising both factor deconvolution and data integration from multiple analytical platforms. As a case study, 3D neural cell cultures were exposed to trimethyltin (TMT) and the relevance of the culture maturation state, the exposure duration, as well as the TMT concentration were simultaneously studied using a metabolomic approach combining four complementary analytical techniques (reversed-phase LC and hydrophilic interaction LC, hyphenated to mass spectrometry in positive and negative ionization modes). The ANOVA multiblock OPLS (AMOPLS) method allowed us to decompose and quantify the contribution of the different experimental factors on the outcome of the TMT exposure. Results showed that the most important contribution to the overall metabolic variability came from the maturation state and treatment duration. Even though the contribution of TMT effects represented the smallest observed modulation among the three factors, it was highly statistically significant. The MetaCore™ pathway analysis tool revealed TMT-induced alterations in biosynthetic pathways and in neuronal differentiation and signaling processes, with a predominant deleterious effect on GABAergic and glutamatergic neurons. This was confirmed by combining proteomic data, increasing the confidence on the mechanistic understanding of such a toxicant exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523777PMC
http://dx.doi.org/10.3390/metabo9040079DOI Listing

Publication Analysis

Top Keywords

maturation state
8
integrative multi-omics
4
multi-omics workflow
4
workflow address
4
address multifactorial
4
multifactorial toxicology
4
toxicology experiments
4
experiments toxicology
4
toxicology studies
4
studies advantage
4

Similar Publications