98%
921
2 minutes
20
The common sole, , is one the most important commercial species in Europe and, within the Mediterranean, the Adriatic basin is the most crucial area for its production. Although the species is overexploited in the basin, data on its trophic ecology are fragmentary, even though this is one of the most important features within the Ecosystem Approach to Fishery. Here, we analysed temporal variations in the feeding ecology of the species by using an integrated approach of stomach contents and stable isotope analyses coupled with the analysis of some condition indices such as the gonadosomatic and the hepatosomatic indices. Changes in diet and trophic level across the years in adult females were clearly linked to the different energetic requirements facing reproduction. Temporal changes throughout the year were mainly related to changes in food availability. This study confirms the opportunistic behaviour of this benthophagous species and its role as a mesopredator, opening new perspectives for further investigations on the effects of the overexploitation of this important fishery resource on the marine trophic web.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9736202 | PMC |
http://dx.doi.org/10.3390/ani12233369 | DOI Listing |
Glob Chang Biol
September 2025
Elkhorn Slough National Estuarine Research Reserve, Watsonville, California, USA.
To halt and reverse the trends of ecosystem loss and degradation under global change, nations globally are promoting ecosystem restoration. Restoration is particularly crucial to coastal wetlands (including tidal marshes, mangrove forests, and tidal flats), which are among the most important ecosystems on Earth but have been severely depleted and degraded. In this review, we explore the question of how to make restoration more effective for coastal wetlands in light of the often-overlooked dynamic nature of these transitional ecosystems between land and ocean.
View Article and Find Full Text PDFEco Environ Health
September 2025
Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China.
Engineered nanoparticles (ENPs) accumulate in marine sediments and exhibit adverse effects on benthic organisms. However, the effect of ENPs on marine benthic food chains is largely unknown. Herein, we investigated the trophic transfer and transformation of CeO ENPs within a simulated marine benthic food chain from clamworm () to turbot (), as well as their effects on fish flesh quality.
View Article and Find Full Text PDFEcology
September 2025
U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit, The Pennsylvania State University, University Park, Pennsylvania, USA.
Invasive species are drivers of ecological change with the potential to reshape the structure and function of terrestrial and aquatic ecosystems. The invasive flathead catfish (Pylodictis olivaris) is an opportunistic predator that has established a rapidly growing population in the Susquehanna River, Pennsylvania, USA, since they were first detected in 2002. Although the predatory effects of invasive catfishes on native fish communities have been documented, the effects of invasion on riverine food webs are poorly understood.
View Article and Find Full Text PDFMar Environ Res
September 2025
CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
Zooplankton are sensitive indicators of environmental changes and crucial components of marine food webs, facilitating energy transfer between primary producers and higher trophic levels. This study used ZooScan image analysis to investigate variations in zooplankton abundance and biovolume in Shandong coastal waters during spring (May 2022), summer (August 2022), and winter (December 2022 and February 2023). Functional indices such as taxonomic diversity, the normalized biomass size spectrum (NBSS), size diversity, and mean body size were calculated to describe the seasonal dynamics of energy transfer efficiency in zooplankton.
View Article and Find Full Text PDFBiology (Basel)
July 2025
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Recent advances in microbiome studies have deepened our understanding of endosymbionts and gut-associated microbiota in host biology. Of those, lepidopteran systems in particular harbor a complex and diverse microbiome with various microbial taxa that are stable and transmitted between larval and adult stages, and others that are transient and context-dependent. We highlight key microorganisms-including , , , , , , , , , and -that play critical roles in microbial ecology, biotechnology, and microbiome studies.
View Article and Find Full Text PDF