Transcutaneous auricular vagus stimulation (taVNS) improves human working memory performance under sleep deprivation stress.

Behav Brain Res

Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi'an, Shaanxi 710126, China; Engineering Research Center of Molecular and Neuro Imaging of the Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi

Published: February 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many human activities require high cognitive performance over long periods, while impairments induced by sleep deprivation influence various aspects of cognitive abilities, including working memory (WM), attention, and processing speed. Based on previous research, vagal nerve stimulation can modulate cognitive abilities, attention, and arousal. Two experiments were conducted to assess the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) to relieve the deleterious effects of sleep deprivation. In the first experiment, 35 participants completed N-back tasks at 8:00 a.m. for two consecutive days in a within-subject study. Then, the participants received either taVNS or earlobe stimulation (active control) intervention in two sessions at random orders after 24 h of sustained wakefulness. Then, they completed the N-back tasks again. In the second experiment, 30 participants completed the psychomotor vigilance task (PVT), and 32 completed the N-back tasks at 8:00 a.m. on the first and second days. Then, they received either taVNS or earlobe stimulation at random orders and finished the N-back and PVT tasks immediately after one hour. In Experiment 1, taVNS could significantly improve the accuracy rate of participants in spatial 3-back tasks compared to active control, which was consistent with experiment 2. However, taVNS did not specifically enhance PVT performance. Therefore, taVNS could be a powerful intervention for acute sleep deprivation as it can improve performance on high cognitive load tasks and is easy to administer.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2022.114247DOI Listing

Publication Analysis

Top Keywords

sleep deprivation
16
completed n-back
12
n-back tasks
12
transcutaneous auricular
8
auricular vagus
8
stimulation tavns
8
working memory
8
high cognitive
8
cognitive abilities
8
nerve stimulation
8

Similar Publications

Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.

View Article and Find Full Text PDF

Reduced sleep irregularity does not impact peripheral vascular function before or following total sleep deprivation.

J Appl Physiol (1985)

September 2025

Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas, United States of America.

Consistent sleep patterns are associated with better cardiovascular health, while sleep loss is known to impair vascular function. This study examined whether consistent sleep could improve vascular function and mitigate the negative effect of 25-hour total sleep deprivation. Sixteen healthy adults (10 females, 6 males; 34 ± 9 years; BMI: 25 ± 3 kg/m²) completed a randomized crossover study involving two 12-night sleep conditions, habitual sleep and a consistent sleep/wake schedule that were separated by a 1-2-week washout.

View Article and Find Full Text PDF

The mismatch between rising sleep need and the fluctuating ability to fall asleep underlies insomnia-the most common sleep disorder-yet remains poorly understood. While sleep need increases steadily with time awake, sleep propensity-the likelihood of transitioning from wake to sleep-follows a bimodal pattern, peaking in the mid-afternoon, dipping in the evening, and rising again near bedtime. Building on our previously developed wave model of sleep dynamics, we extend this homeostatic framework to the waking period and show that it predicts the observed bimodal sleep propensity curve.

View Article and Find Full Text PDF

Study Objectives: There are large individual differences in the homeostatic response to sleep deprivation, as reflected in slow wave sleep (SWS) and electroencephalogram (EEG) spectral power, which have largely been left unexplained. Recent evidence suggests the possible involvement of the activity-regulated cytoskeleton-associated protein () gene. Here we assessed the effects of the "c.

View Article and Find Full Text PDF