Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mannose is a naturally occurring sugar widely consumed in the daily diet; however, mechanistic insights into how mannose metabolism affects intestinal inflammation remain lacking. Herein, we reported that mannose supplementation ameliorated colitis development and promoted colitis recovery. Macrophage-secreted inflammatory cytokines, particularly TNF-α, induced pathological endoplasmic reticulum stress (ERS) in intestinal epithelial cells (IECs), which was prevented by mannose via normalization of protein N-glycosylation. By preserving epithelial integrity, mannose reduced the inflammatory activation of colonic macrophages. On the other hand, mannose directly suppressed macrophage TNF-α production translationally by reducing the glyceraldehyde 3-phosphate level, thus promoting GAPDH binding to TNF-α mRNA. Additionally, we found dysregulated mannose metabolism in the colonic mucosa of patients with inflammatory bowel disease. Finally, we revealed that activating PMM2 activity with epalrestat, a clinically approved drug for the treatment of diabetic neuropathy, elicited further sensitization to the therapeutic effect of mannose. Therefore, mannose metabolism prevents TNF-α-mediated pathogenic crosstalk between IECs and intestinal macrophages, thereby normalizing aberrant immunometabolism in the gut.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9887054PMC
http://dx.doi.org/10.1038/s41423-022-00955-1DOI Listing

Publication Analysis

Top Keywords

mannose metabolism
16
mannose
10
metabolism normalizes
4
normalizes gut
4
gut homeostasis
4
homeostasis blocking
4
blocking tnf-α-mediated
4
tnf-α-mediated proinflammatory
4
proinflammatory circuit
4
circuit mannose
4

Similar Publications

A thermostable Cas9-based genome editing system for thermophilic acetogenic bacterium .

Appl Environ Microbiol

September 2025

Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, PR China.

is a thermophilic acetogenic bacterium capable of thriving at elevated temperatures up to 66°C. It metabolizes carbohydrates such as glucose, mannose, and fructose and can also grow lithotrophically utilizing hydrogen (H) and carbon dioxide (CO) or carbon monoxide (CO), with acetate serving as its main product. A simple and efficient genome editing system for would not only facilitate the understanding of the physiological function of enzymes involved in energy and carbon metabolism but also enable metabolic engineering.

View Article and Find Full Text PDF

The co-infection of maize chlorotic mottle virus (MCMV) and sugarcane mosaic virus (SCMV) causes maize lethal necrosis (MLN), which seriously affects the yield and quality of maize. Ubiquitination is one of the most important protein post-translational modifications. However, the role of ubiquitination modification in regulating maize resistance to viral infection remains largely unknown.

View Article and Find Full Text PDF

Glucomannan polysaccharides derived from Pediococcus pentosaceus: From molecular characteristics to inhibition on colonic cancer cells proliferation.

Carbohydr Polym

November 2025

College of Food Science, Shihezi University, Shihezi 832003, China; College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Tianjin Key Laboratory of Traditional Chinese Dough Processing, Tianjin 300203, China; Gulbali Institute-Agriculture Water

Extracellular polysaccharides (EPS) from Pediococcus pentosaceus were obtained, followed by investigation of their structural and functional properties. Current results indicated the polysaccharides belonged to glucomannans, which mainly consisted of mannose and glucose with a molecular weight of 2248.71 kDa.

View Article and Find Full Text PDF

Postoperative recurrence and infection remain major obstacles to effective breast cancer recovery, often driven by cholesterol-mediated macrophage dysfunction. Here, we report the development of CuMPmC, a multifunctional nanoplatform constructed through copper-dopamine chelation and self-polymerization, functionalized with mannose for selective targeting of M2-like macrophages, and loaded with cholesterol oxidase (ChOx). CuMPmC depletes macrophage membrane cholesterol via ChOx-mediated oxidation, enhancing plasma membrane fluidity and thereby promoting macrophage chemotaxis.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is a growing global health concern, with a high prevalence among individuals aged 45-50 years and above. Chronic inflammation, oxidative stress, and mitochondrial dysfunction play pivotal roles in its progression. This clinical metabolomics study aimed to identify distinct metabolic alterations associated with insulin resistance and other clinical features of T2DM.

View Article and Find Full Text PDF