Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Hyperkalemia is a critical condition, especially in intensive care units. So far, there have been no accurate and noninvasive methods for recognizing hyperkalemia events on ambulatory electrocardiogram monitors.

Objective: This study aimed to improve the accuracy of hyperkalemia predictions from ambulatory electrocardiogram (ECG) monitors using a personalized transfer learning method; this would be done by training a generic model and refining it with personal data.

Methods: This retrospective cohort study used open source data from the Waveform Database Matched Subset of the Medical Information Mart From Intensive Care III (MIMIC-III). We included patients with multiple serum potassium test results and matched ECG data from the MIMIC-III database. A 1D convolutional neural network-based deep learning model was first developed to predict hyperkalemia in a generic population. Once the model achieved a state-of-the-art performance, it was used in an active transfer learning process to perform patient-adaptive heartbeat classification tasks.

Results: The results show that by acquiring data from each new patient, the personalized model can improve the accuracy of hyperkalemia detection significantly, from an average of 0.604 (SD 0.211) to 0.980 (SD 0.078), when compared with the generic model. Moreover, the area under the receiver operating characteristic curve level improved from 0.729 (SD 0.240) to 0.945 (SD 0.094).

Conclusions: By using the deep transfer learning method, we were able to build a clinical standard model for hyperkalemia detection using ambulatory ECG monitors. These findings could potentially be extended to applications that continuously monitor one's ECGs for early alerts of hyperkalemia and help avoid unnecessary blood tests.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9764151PMC
http://dx.doi.org/10.2196/41163DOI Listing

Publication Analysis

Top Keywords

transfer learning
16
ambulatory electrocardiogram
12
intensive care
12
deep transfer
8
hyperkalemia
8
care units
8
improve accuracy
8
accuracy hyperkalemia
8
ecg monitors
8
learning method
8

Similar Publications

Driven by eutrophication and global warming, the occurrence and frequency of harmful cyanobacteria blooms (CyanoHABs) are increasing worldwide, posing a serious threat to human health and biodiversity. Early warning enables precautional control measures of CyanoHABs within water bodies and in water works, and it becomes operational with high frequency in situ data (HFISD) of water quality and forecasting models by machine learning (ML). However, the acceptance of early warning systems by end-users relies significantly on the interpretability and generalizability of underlying models, and their operability.

View Article and Find Full Text PDF

Study Objective: Accurately predicting which Emergency Department (ED) patients are at high risk of leaving without being seen (LWBS) could enable targeted interventions aimed at reducing LWBS rates. Machine Learning (ML) models that dynamically update these risk predictions as patients experience more time waiting were developed and validated, in order to improve the prediction accuracy and correctly identify more patients who LWBS.

Methods: The study was deemed quality improvement by the institutional review board, and collected all patient visits to the ED of a large academic medical campus over 24 months.

View Article and Find Full Text PDF

Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.

View Article and Find Full Text PDF

Developing low-temperature gas sensors for parts per billion-level acetone detection in breath analysis remains challenging for non-invasive diabetes monitoring. We implement dual-defect engineering via one-pot synthesis of Al-doped WO nanorod arrays, establishing a W-O-Al catalytic mechanism. Al doping induces lattice strain to boost oxygen vacancy density by 31.

View Article and Find Full Text PDF

Objective: To explore B cell infiltration-related genes in endometriosis (EM) and investigate their potential as diagnostic biomarkers.

Methods: Gene expression data from the GSE51981 dataset, containing 77 endometriosis and 34 control samples, were analyzed to detect differentially expressed genes (DEGs). The xCell algorithm was applied to estimate the infiltration levels of 64 immune and stromal cell types, focusing on B cells and naive B cells.

View Article and Find Full Text PDF