Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Neurodegenerative diseases are characterized by selective vulnerability of distinct cell populations; however, the cause for this specificity remains elusive. Here, we show that entorhinal cortex layer 2 (EC2) neurons are unusually vulnerable to prolonged neuronal inactivity compared with neighboring regions of the temporal lobe, and that reelin + stellate cells connecting EC with the hippocampus are preferentially susceptible within the EC2 population. We demonstrate that neuronal death after silencing can be elicited through multiple independent means of activity inhibition, and that preventing synaptic release, either alone or in combination with electrical shunting, is sufficient to elicit silencing-induced degeneration. Finally, we discovered that degeneration following synaptic silencing is governed by competition between active and inactive cells, which is a circuit refinement process traditionally thought to end early in postnatal life. Our data suggests that the developmental window for wholesale circuit plasticity may extend into adulthood for specific brain regions. We speculate that this sustained potential for remodeling by entorhinal neurons may support lifelong memory but renders them vulnerable to prolonged activity changes in disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9873254PMC
http://dx.doi.org/10.7554/eLife.83813DOI Listing

Publication Analysis

Top Keywords

entorhinal neurons
8
vulnerable prolonged
8
activity disruption
4
disruption degeneration
4
degeneration entorhinal
4
neurons mouse
4
mouse model
4
model alzheimer's
4
alzheimer's circuit
4
circuit dysfunction
4

Similar Publications

Peripheral Inflammation Is Associated With Greater Neuronal Injury and Lower Episodic Memory Among Late Middle-Aged Adults.

J Neurochem

September 2025

Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Elucidating the earliest biological mechanisms underlying Alzheimer's disease (AD) is critical for advancing early detection strategies. While amyloid-β (Aβ) and tau pathologies have been central to preclinical AD research, the roles of peripheral biological processes in disease initiation remain underexplored. We investigated patterns of F-MK6240 tau positron emission tomography (PET) and peripheral inflammation across stages defined by Aβ burden and neuronal injury in n = 132 (64.

View Article and Find Full Text PDF

Study Objectives: Brief sleep loss alters cognition and the activity and synaptic structures of both principal neurons and interneurons in hippocampus. However, although sleep-dependent coordination of activity between hippocampus and neocortex is essential for memory consolidation, much less is known about how sleep loss affects neocortical input to hippocampus, or excitatory-inhibitory balance within neocortical structures. We aimed to test how the synaptic structures of SST+ interneurons in lateral and medial entorhinal cortex (LEC and MEC), which are the major neocortical input to hippocampus, are affected by brief sleep disruption in the hours following learning.

View Article and Find Full Text PDF

How do thousands of cell-surface proteins specify billions of neuronal connections in developing brains? We previously found that inverse expression of a ligand-receptor pair, teneurin-3 (Ten3) and latrophilin-2 (Lphn2) in CA1 and subiculum, instructs CA1→subiculum target selection through Ten3-Ten3 homophilic attraction and Ten3-Lphn2 heterophilic reciprocal repulsions. Here, we leveraged conditional knockouts to systematically demonstrate that these mechanisms generalize to extended hippocampal networks, including entorhinal cortex and hypothalamus. Cooperation between attraction and repulsion differs depending on the order in which developing axons encounter the attractant and repellent subfields.

View Article and Find Full Text PDF

Introduction: The gut microbiota plays a critical role in regulating brain structure and function via the microbiota-gut-brain axis. Antibiotic-induced gut dysbiosis (AIGD) has been linked to neuroanatomical changes and cognitive deficits. However, its impact on neuronal morphology in layer II of the medial entorhinal cortex (mECII), a region central to spatial memory, remains poorly understood.

View Article and Find Full Text PDF

Human hippocampal ripples align new experiences with a grid-like schema.

Neuron

August 2025

State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China. Electronic address:

Humans form cognitive maps that enable inferences beyond direct experience, relying on hexagonal grid-cell-like neural codes as a schema for two-dimensional (2D) spaces. However, how new experiences align with this schema remains unknown. We recorded intracranial activity from 42 epilepsy patients while they learned rank relations among feature objects, then combined these features into compounds occupying a 2D conceptual space.

View Article and Find Full Text PDF