Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As one of the most widely used polymers, the intrinsic brittleness and high flammability bring about a stringent requirement for the practical application of epoxy resins (EPs). It is difficult to toughen EP without compromising its mechanical and thermal properties for many conventional toughening agents. Here, a novel furan-derived bio-based polyphosphazene (PFMP) with a flexible backbone and rigid side groups was prepared by the nucleophilic substitution reaction between polydichlorophosphazene (PDCP) and furfuralcohol. The resultant PFMP was incorporated into EP to realize exceptional toughening, strengthening, and flame retardant function. By adding 15% of PFMP, the limit oxygen index value is from 25% (EP) to 33% (EP/PFMP-15) and reaches the UL-94 V-0 rating. According to the cone calorimeter results, EP/PFMP-15 exhibits exceedingly reduced peak heat release rate (pHRR) (50.2%) and total heat release (THR) (49.6%). The significantly increased fire performance index (FPI) and decreased fire growth rate index (FIGRA) of EP/PFMP-15 demonstrate an improvement in its flame retardancy. The catalytic carbonization effect (condensed phase) and radical quenching effect (gas phase) of PFMP account for the greatly improved flame retardancy. Moreover, the impact and tensile tests indicate that PFMP can ameliorate the mechanical performance of EP with a maximum increase of impact strength (111.8%) and elongation at break (35.2%) for EP/PFMP-5. With 15% PFMP added, the tensile strength of EP/PFMP-15 increases by 40.4%. This work demonstrates that PFMP is expected to overcome shortcomings (flammability, toughness, and strength) of EP and spread its applied fields.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2022.137058DOI Listing

Publication Analysis

Top Keywords

flame retardancy
12
epoxy resins
8
15% pfmp
8
heat release
8
pfmp
7
biomass-derived polyphosphazene
4
polyphosphazene simultaneously
4
simultaneously enhancing
4
flame
4
enhancing flame
4

Similar Publications

To analyse the issues of high muzzle flame intensity and the easy migration of insensitive agents in conventional insensitive propellants, this study synthesizes modified nitrocellulose grafted with carboxymethyl potassium groups by a two-step process, starting from the molecular structure of nitrocellulose (NC), the principal component of propellants. First, the denitration reaction was performed to reduce part of the nitrate ester groups on the surface of NC to hydroxyl groups, followed by an etherification reaction to achieve directional grafting of carboxymethyl potassium groups. Compared with conventional flame retardant/insensitive systems based on nitrogen, phosphorus, or DBP (dibutyl phthalate), potassium-based functional groups exhibit superior thermal stability and environmental friendliness.

View Article and Find Full Text PDF

In the zebrafish larval toxicity model, phenotypic changes induced by chemical exposure can potentially be explained and predicted by the analysis of gene expression changes at sub-phenotypic concentrations. The increase in knowledge of gene pathway-specific effects arising from the zebrafish transcriptomic model has the potential to enhance the role of the larval zebrafish as a component of Integrated Approaches to Testing and Assessment (IATA). In this paper, we compared the transcriptomic responses of triphenyl phosphate between two standard exposure paradigms, the Zebrafish Embryo Toxicity (ZET) and General and Behavioural Toxicity (GBT) assays.

View Article and Find Full Text PDF

Pollution can have lasting effects beyond the exposure period, potentially impacting multiple generations. Polybrominated diphenyl ether (PBDE) flame retardants are widespread, including in oceans, yet their multigenerational impacts remain poorly understood. We investigated whether BDE-99, a ubiquitous PBDE, induces neurobehavioral and molecular effects across generations in the fish .

View Article and Find Full Text PDF

Tetrabromobisphenol A (TBBPA), a widely used flame retardant in textiles and electronics, poses toxicological risks through both environmental and indoor exposures. Biomonitoring studies have detected significant TBBPA levels in prenatal environments, including cord blood, raising concerns about developmental impacts. Using zebrafish as a model, this study addresses critical gaps in understanding how developmental TBBPA exposures perturb regulatory pathways that govern dorsoventral patterning.

View Article and Find Full Text PDF

Dual Lithium Salt Derived Favorable Interface Layer Enables High-Performance Polycarbonate-Based Composite Electrolytes for Stable and Safe Solid Lithium Metal Batteries.

ACS Appl Mater Interfaces

September 2025

Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.

Developing solid electrolytes with high ionic conductivity, a high voltage window, low flammability, and excellent interface compatibilities with both the anode and cathode for lithium-metal batteries is still a great challenge but highly desirable. Herein, we achieve this target through an in situ copolymerization of vinyl ethylene carbonate (VEC) together with acrylonitrile (AN) under fitting ratios inside a porous polyacrylonitrile (PAN) fiber membrane doped with flame-retardant decabromodiphenyl ethane (DBDPE) molecules. The received fiber-reinforced polycarbonate-based composite electrolyte with an ultrathin thickness of 13 μm exhibits good internal interfacial compatibility because of the same AN structure and superior flame-retardant performance due to the doped DBDPE molecules.

View Article and Find Full Text PDF