Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Stress adaptation and virulence of various bacterial pathogens require stringent response pathways involving guanosine pentaphosphate and inorganic polyphosphate (PolyP). In M. tuberculosis, intracellular PolyP levels are maintained by the activities of polyphosphate kinase (PPK-1, PPK-2) and exopolyphosphatases (PPX-1, PPX-2). We demonstrate that these exopolyphosphatases cumulatively contribute to biofilm formation and survival of M. tuberculosis in nutrient limiting, low oxygen growth conditions and in macrophages. Characterization of single (Δppx2) and double knock out strain (dkppx) of M. tuberculosis demonstrated that these exopolyphosphatases are essential for establishing infection in guinea pigs and mice. Transcriptional profiling revealed that relative to the parental strain the expression of genes belonging to DosR regulon were significantly reduced in mid-log phase cultures of dkppx strain. We also show that PolyP inhibited the autophosphorylation activities associated with DosT and DosS sensor kinases. Host RNA-seq analysis revealed that transcripts involved in various antimicrobial pathways such as apoptosis, autophagy, macrophage activation, calcium signalling, innate and T-cell response were differentially expressed in lung tissues of dkppx strain infected mice. Taken together, we demonstrate that enzymes involved in PolyP homeostasis play a critical role in physiology and virulence of M. tuberculosis. These enzymes are attractive targets for developing novel interventions that might be active against drug-sensitive and drug-resistant M. tuberculosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2022.105885 | DOI Listing |