Publications by authors named "Gaurav D Sankhe"

Two component systems (TCS) mediate bacterial signal transduction in response to specific environmental conditions. The two components are the sensor kinase (SK), which senses the signal and autophosphorylates on a histidine residue, and a response regulator (RR), which is phosphorylated by the kinase and modifies gene expression. Despite intensive study, the mechanisms of signal sensing by sensor kinases are incompletely defined and the mechanisms by which SKs can sense multiple ligands are unclear.

View Article and Find Full Text PDF

Bacterial two-component systems (TCSs) consist of a sensor histidine kinase (HK) that perceives a specific signal, and a cognate response regulator (RR) that modulates the expression of target genes. Positive autoregulation improves TCS sensitivity to stimuli, but may trigger disproportionately large responses to weak signals, compromising bacterial fitness. Here, we combine experiments and mathematical modelling to reveal a general design that prevents such disproportionate responses: phosphorylated HKs (HK~Ps) can be sequestered by non-cognate RRs.

View Article and Find Full Text PDF

Stress adaptation and virulence of various bacterial pathogens require stringent response pathways involving guanosine pentaphosphate and inorganic polyphosphate (PolyP). In M. tuberculosis, intracellular PolyP levels are maintained by the activities of polyphosphate kinase (PPK-1, PPK-2) and exopolyphosphatases (PPX-1, PPX-2).

View Article and Find Full Text PDF

Bacterial pathogens that infect phagocytic cells must deploy mechanisms that sense and neutralize host microbicidal effectors. For , the causative agent of tuberculosis, these mechanisms allow the bacterium to rapidly adapt from aerosol transmission to initial growth in the lung alveolar macrophage. Here, we identify a branched signaling circuit in that controls growth in the lung through integrated direct sensing of copper ions and nitric oxide by coupled activity of the Rip1 intramembrane protease and the PdtaS/R two-component system.

View Article and Find Full Text PDF

Stringent response pathways involving inorganic polyphosphate (PolyP) play an essential role in bacterial stress adaptation and virulence. The intracellular levels of PolyP are modulated by the activities of polyphosphate kinase-1 (PPK1), polyphosphate kinase-2 (PPK2), and exopolyphosphatases (PPXs). The genome of encodes two functional PPXs, and simultaneous deletion of and results in a defect in biofilm formation.

View Article and Find Full Text PDF

Two-component signal transduction (TCS) cascades involve stimulus-dependent activation and phosphorylation of a sensor kinase (SK), which then transfers the phosphoryl moiety to the response regulator (RR) protein. The fidelity of this phosphotransfer reaction from the SK to the RR provides specificity to TCS signaling. In the present study, we show that for TcrX, a transcriptionally autoregulated RR of Mycobacterium tuberculosis, acetylation enhances its net phosphorylation from cognate SK TcrY and lowers it from a non-cognate SK MtrB.

View Article and Find Full Text PDF

Two-component signaling systems (TCSs) are central to bacterial adaptation. However, the mechanisms underlying the reactions involving TCS proteins and their reaction rates are largely undetermined. Here, we employed a combined experimental and theoretical approach to elucidate the kinetics of autophosphorylation of three histidine kinases (HKs) of , , MtrB, PrrB, and PhoR, all known to play a role in regulating its virulence.

View Article and Find Full Text PDF