98%
921
2 minutes
20
The crop production of quinoa (.), the only plant meeting basic human nutritional requirements, is affected by drought stress. To better understand the drought tolerance mechanism of quinoa, we screened the drought-tolerant quinoa genotype "Dianli 129" and studied the seedling leaves of the drought-tolerant quinoa genotype after drought and rewatering treatments using transcriptomics and targeted metabolomics. Drought-treatment, drought control, rewatering-treated, and rewatered control were named as DR, DC, RW, and RC, respectively. Among four comparison groups, DC vs. DR, RC vs. RW, RW vs. DR, and RC vs. DC, we identified 10,292, 2,307, 12,368, and 3 differentially expressed genes (DEGs), and 215, 192, 132, and 19 differentially expressed metabolites (DEMs), respectively. A total of 38,670 genes and 142 pathways were annotated. The results of transcriptome and metabolome association analysis showed that gene- and gene- may be the key genes for drought tolerance in quinoa. Some metabolites accumulated in quinoa leaves in response to drought stress, and the plants recovered after rewatering. DEGs and DEMs participate in starch and sucrose metabolism and flavonoid biosynthesis, which are vital for improving drought tolerance in quinoa. Drought tolerance of quinoa was correlated with gene expression differences, metabolite accumulation and good recovery after rewatering. These findings improve our understanding of drought and rewatering responses in quinoa and have implications for the breeding of new drought-tolerance varieties while providing a theoretical basis for drought-tolerance varieties identification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645111 | PMC |
http://dx.doi.org/10.3389/fpls.2022.988861 | DOI Listing |
Plant Cell Physiol
September 2025
Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan, ROC.
Water deficit stress causes devastating loss of crop yield worldwide. Improving crop drought resistance has become an urgent issue. Here we report that a group of abscisic acid (ABA)/drought stress-induced monocot-specific, intrinsically disordered, and highly proline-rich proteins, REPETITIVE PROLINE-RICH PROTEINS (RePRPs), play pivotal roles in drought resistance in rice seedlings.
View Article and Find Full Text PDFGlob Chang Biol
September 2025
Chair of Silviculture, Faculty of Environment and Natural Resources, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.
Mixed-species forests are proposed to enhance tree resistance and resilience to drought. However, growing evidence shows that tree species richness does not consistently improve tree growth responses to drought. The underlying mechanisms remain uncertain, especially under unprecedented multiyear droughts.
View Article and Find Full Text PDFFront Genet
August 2025
Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States.
This study introduces a Drought Adaptation Index (DAI), derived from Best Linear Unbiased Prediction (BLUP), as a method to assess drought resilience in switchgrass ( L.). A panel of 404 genotypes was evaluated under drought-stressed (CV) and well-watered (UC) conditions over four consecutive years (2019-2022).
View Article and Find Full Text PDFFood Sci Nutr
September 2025
Department of Biology, College of Natural and Computational Sciences Mizan-Tepi University Tepi Ethiopia.
Climatic challenges increasingly threaten global food security, necessitating crops with enhanced multi-stress resilience. Through systematic transcriptomic analysis of 100 wheat genotypes under heat, drought, cold, and salt stress, we identified 3237 differentially expressed genes (DEGs) enriched in key stress-response pathways. Core transcription factors (, , ) and two functional modules governing abiotic tolerance were characterized.
View Article and Find Full Text PDFNat Commun
September 2025
Plant Ecology, University of Bayreuth, Bayreuth, Germany.
The unique biodiversity and vast carbon stocks of the Amazon rainforests are essential to the Earth System but are threatened by future water balance changes. Empirical evidence suggests that species and trait diversity may mediate forest drought responses, yet little evidence exists for tropical forest responses. In this simulation study, we identify key axes of trait variation and quantify the extent to which functional trait diversity increases tropical forests' drought resistance.
View Article and Find Full Text PDF