98%
921
2 minutes
20
Patient care after kidney transplantation requires integration of complex information to make informed decisions on risk constellations. Many machine learning models have been developed for detecting patient outcomes in the past years. However, performance metrics alone do not determine practical utility. We present a newly developed clinical decision support system (CDSS) for detection of patients at risk for rejection and death-censored graft failure. The CDSS is based on clinical routine data including 1,516 kidney transplant recipients and more than 100,000 data points. In a reader study we compare the performance of physicians at a nephrology department with and without the CDSS. Internal validation shows AUC-ROC scores of 0.83 for rejection, and 0.95 for graft failure. The reader study shows that predictions by physicians converge toward the CDSS. However, performance does not improve (AUC-ROC; 0.6413 vs. 0.6314 for rejection; 0.8072 vs. 0.7778 for graft failure). Finally, the study shows that the CDSS detects partially different patients at risk compared to physicians. This indicates that the combination of both, medical professionals and a CDSS might help detect more patients at risk for graft failure. However, the question of how to integrate such a system efficiently into clinical practice remains open.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641169 | PMC |
http://dx.doi.org/10.3389/fpubh.2022.979448 | DOI Listing |
Pathol Res Pract
September 2025
Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China. Electronic address:
Our research aims to ascertain the value of precursor and outgrowth lepidic in aiding the confirmation of multiple lung adenocarcinomas as separate primary lung cancers (SPLC). A total of 151 patients with metachronous multiple invasive adenocarcinomas were included in this study. Driver mutation tests(at least five genes: EGFR, ALK, KRAS, BRAF, and ROS1) were conducted on 302 tumors collected from 151 patients.
View Article and Find Full Text PDFJ Crit Care
September 2025
Neuro-Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China; Neuro-intensive Care Unit, Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China. Electronic address:
J Crit Care
September 2025
Neuro-Intensive Care Unit, Department of Neurosurgery, Clinical Medical College, Yangzhou University, Yangzhou, China; Neuro-intensive Care Unit, Department of Neurosurgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China. Electronic address:
Arch Med Res
September 2025
Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan. Electronic address:
Background: Atherosclerosis, a leading cause of cardiovascular disease (CVD) mortality worldwide, is characterized by dysregulated lipid metabolism and unresolved inflammation. Macrophage-derived foam cell formation and apoptosis contribute to plaque formation and vulnerability. Elevated serum galectin-3 (Gal-3) levels are associated with increased CVD risk, and Gal-3 in plaques is strongly associated with macrophages.
View Article and Find Full Text PDFBiomol Biomed
September 2025
Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.
Coronary heart disease (CHD) is a leading cause of morbidity and mortality; patients with type 2 diabetes mellitus (T2DM) are at particularly high risk, highlighting the need for reliable biomarkers for early detection and risk stratification. We investigated whether combining the stress hyperglycemia ratio (SHR) and systemic inflammation response index (SIRI) improves CHD detection in T2DM. In this retrospective cohort of 943 T2DM patients undergoing coronary angiography, associations of SHR and SIRI with CHD were evaluated using multivariable logistic regression and restricted cubic splines; robustness was examined with subgroup and sensitivity analyses.
View Article and Find Full Text PDF