98%
921
2 minutes
20
: Hospitals face a significant problem meeting patients' medical needs during epidemics, especially when the number of patients increases rapidly, as seen during the recent COVID-19 pandemic. This study designs a treatment recommender system (RS) for the efficient management of human capital and resources such as doctors, medicines, and resources in hospitals. We hypothesize that a deep learning framework, when combined with search paradigms in an image framework, can make the RS very efficient. : This study uses a Convolutional neural network (CNN) model for the feature extraction of the images and discovers the most similar patients. The input queries patients from the hospital database with similar chest X-ray images. It uses a similarity metric for the similarity computation of the images. : This methodology recommends the doctors, medicines, and resources associated with similar patients to a COVID-19 patients being admitted to the hospital. The performance of the proposed RS is verified with five different feature extraction CNN models and four similarity measures. The proposed RS with a ResNet-50 CNN feature extraction model and Maxwell-Boltzmann similarity is found to be a proper framework for treatment recommendation with a mean average precision of more than 0.90 for threshold similarities in the range of 0.7 to 0.9 and an average highest cosine similarity of more than 0.95. : Overall, an RS with a CNN model and image similarity is proven as an efficient tool for the proper management of resources during the peak period of pandemics and can be adopted in clinical settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9689970 | PMC |
http://dx.doi.org/10.3390/diagnostics12112700 | DOI Listing |
JMIR Res Protoc
September 2025
University of Nevada, Las Vegas, Las Vegas, NV, United States.
Background: In-hospital cardiac arrest (IHCA) remains a public health conundrum with high morbidity and mortality rates. While early identification of high-risk patients could enable preventive interventions and improve survival, evidence on the effectiveness of current prediction methods remains inconclusive. Limited research exists on patients' prearrest pathophysiological status and predictive and prognostic factors of IHCA, highlighting the need for a comprehensive synthesis of predictive methodologies.
View Article and Find Full Text PDFJ Med Internet Res
September 2025
Department of Community Medicine, Faculty of Health, UiT The Arctic University of Norway, Tromsø, Norway.
Background: The ability to access and evaluate online health information is essential for young adults to manage their physical and mental well-being. With the growing integration of the internet, mobile technology, and social media, young adults (aged 18-30 years) are increasingly turning to digital platforms for health-related content. Despite this trend, there remains a lack of systematic insights into their specific behaviors, preferences, and needs when seeking health information online.
View Article and Find Full Text PDFPLoS One
September 2025
School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, Shandong, China.
Drug-target interaction (DTI) prediction is essential for the development of novel drugs and the repurposing of existing ones. However, when the features of drug and target are applied to biological networks, there is a lack of capturing the relational features of drug-target interactions. And the corresponding multimodal models mainly depend on shallow fusion strategies, which results in suboptimal performance when trying to capture complex interaction relationships.
View Article and Find Full Text PDFIEEE Trans Med Imaging
September 2025
Mammography is a primary method for early screening, and developing deep learning-based computer-aided systems is of great significance. However, current deep learning models typically treat each image as an independent entity for diagnosis, rather than integrating images from multiple views to diagnose the patient. These methods do not fully consider and address the complex interactions between different views, resulting in poor diagnostic performance and interpretability.
View Article and Find Full Text PDFSports Med
September 2025
School of Behavioural and Health Sciences, Australian Catholic University, McAuley at Banyo, Brisbane, Australia.
Background: Powerlifting is a strength sport featuring some of the world's strongest athletes. Recent decades have seen an exponential increase in research into the applied sport science and medicine of powerlifting and its Paralympic counterpart, para powerlifting. A scoping review of the area would provide athletes, coaches, policymakers, and researchers with an overview of the existing evidence to support performance, reduce injury, and foster further growth of these sports.
View Article and Find Full Text PDF