Publications by authors named "Mahesh Maindarkar"

The leading global cause of death is coronary artery disease (CAD), necessitating early and precise diagnosis. Intravascular ultrasound (IVUS) is a sophisticated imaging technique that provides detailed visualization of coronary arteries. However, the methods for segmenting walls in the IVUS scan into internal wall structures and quantifying plaque are still evolving.

View Article and Find Full Text PDF

Women are disproportionately affected by chronic autoimmune diseases (AD) like systemic lupus erythematosus (SLE), scleroderma, rheumatoid arthritis (RA), and Sjögren's syndrome. Traditional evaluations often underestimate the associated cardiovascular disease (CVD) and stroke risk in women having AD. Vitamin D deficiency increases susceptibility to these conditions.

View Article and Find Full Text PDF

Background: Obstructive sleep apnea (OSA) is a severe condition associated with numerous cardiovascular complications, including heart failure. The complex biological and morphological relationship between OSA and atherosclerotic cardiovascular disease (ASCVD) poses challenges in predicting adverse cardiovascular outcomes. While artificial intelligence (AI) has shown potential for predicting cardiovascular disease (CVD) and stroke risks in other conditions, there is a lack of detailed, bias-free, and compressed AI models for ASCVD and stroke risk stratification in OSA patients.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) diagnosis and treatment are challenging since symptoms appear late in the disease's progression. Despite clinical risk scores, cardiac event prediction is inadequate, and many at-risk patients are not adequately categorised by conventional risk factors alone. Integrating genomic-based biomarkers (GBBM), specifically those found in plasma and/or serum samples, along with novel non-invasive radiomic-based biomarkers (RBBM) such as plaque area and plaque burden can improve the overall specificity of CVD risk.

View Article and Find Full Text PDF

Cardiovascular disease (CVD) related mortality and morbidity heavily strain society. The relationship between external risk factors and our genetics have not been well established. It is widely acknowledged that environmental influence and individual behaviours play a significant role in CVD vulnerability, leading to the development of polygenic risk scores (PRS).

View Article and Find Full Text PDF

Background: Cardiovascular disease (CVD) is challenging to diagnose and treat since symptoms appear late during the progression of atherosclerosis. alone are not always sufficient to properly categorize at-risk patients, and are inadequate in predicting cardiac events. Integrating (GBBM) found in plasma/serum samples with novel non-invasive (RBBM) such as plaque area, plaque burden, and maximum plaque height can improve composite CVD risk prediction in the pharmaceutical paradigm.

View Article and Find Full Text PDF

The challenges associated with diagnosing and treating cardiovascular disease (CVD)/Stroke in Rheumatoid arthritis (RA) arise from the delayed onset of symptoms. Existing clinical risk scores are inadequate in predicting cardiac events, and conventional risk factors alone do not accurately classify many individuals at risk. Several CVD biomarkers consider the multiple pathways involved in the development of atherosclerosis, which is the primary cause of CVD/Stroke in RA.

View Article and Find Full Text PDF

: The price of medical treatment continues to rise due to (i) an increasing population; (ii) an aging human growth; (iii) disease prevalence; (iv) a rise in the frequency of patients that utilize health care services; and (v) increase in the price. Artificial Intelligence (AI) is already well-known for its superiority in various healthcare applications, including the segmentation of lesions in images, speech recognition, smartphone personal assistants, navigation, ride-sharing apps, and many more. Our study is based on two hypotheses: (i) AI offers more economic solutions compared to conventional methods; (ii) AI treatment offers stronger economics compared to AI diagnosis.

View Article and Find Full Text PDF

A diabetic foot infection (DFI) is among the most serious, incurable, and costly to treat conditions. The presence of a DFI renders machine learning (ML) systems extremely nonlinear, posing difficulties in CVD/stroke risk stratification. In addition, there is a limited number of well-explained ML paradigms due to comorbidity, sample size limits, and weak scientific and clinical validation methodologies.

View Article and Find Full Text PDF

: Hospitals face a significant problem meeting patients' medical needs during epidemics, especially when the number of patients increases rapidly, as seen during the recent COVID-19 pandemic. This study designs a treatment recommender system (RS) for the efficient management of human capital and resources such as doctors, medicines, and resources in hospitals. We hypothesize that a deep learning framework, when combined with search paradigms in an image framework, can make the RS very efficient.

View Article and Find Full Text PDF

The SARS-CoV-2 virus has caused a pandemic, infecting nearly 80 million people worldwide, with mortality exceeding six million. The average survival span is just 14 days from the time the symptoms become aggressive. The present study delineates the deep-driven vascular damage in the pulmonary, renal, coronary, and carotid vessels due to SARS-CoV-2.

View Article and Find Full Text PDF
Article Synopsis
  • Parkinson's disease (PD) is serious and costly to treat, and recent advancements in machine learning (ML) can predict cardiovascular and stroke risks in PD patients, but challenges arise due to COVID-19's impact on these models.
  • The study explores the hypothesis that COVID-19 exacerbates heart and brain damage in PD patients and proposes a deep learning (DL) model that factors in COVID-19 lung damage, alongside various medical data, for better risk stratification.
  • Validation of the DL model demonstrated its effectiveness in stratifying cardiovascular/stroke risk in PD patients during the pandemic, while also addressing potential biases in artificial intelligence applications for early detection of these risks.
View Article and Find Full Text PDF

Purpose: The role of erectile dysfunction (ED) has recently shown an association with the risk of stroke and coronary heart disease (CHD) via the atherosclerotic pathway. Cardiovascular disease (CVD)/stroke risk has been widely understood with the help of carotid artery disease (CTAD), a surrogate biomarker for CHD. The proposed study emphasizes artificial intelligence-based frameworks such as machine learning (ML) and deep learning (DL) that can accurately predict the severity of CVD/stroke risk using carotid wall arterial imaging in ED patients.

View Article and Find Full Text PDF
Article Synopsis
  • * Timely detection of CVD complications in DR patients is essential, and since traditional CAD risk assessments can be costly, low-cost imaging methods like carotid B-mode ultrasound can be utilized for better risk stratification.
  • * The use of artificial intelligence (AI) in analyzing large data sets helps identify risk factors for atherosclerosis in DR patients, thus aiding in CVD risk assessment and highlighting the interconnection between DR, CAD, and their implications during the COVID-19 pandemic.
View Article and Find Full Text PDF