98%
921
2 minutes
20
Background: Obstructive sleep apnea (OSA) is a severe condition associated with numerous cardiovascular complications, including heart failure. The complex biological and morphological relationship between OSA and atherosclerotic cardiovascular disease (ASCVD) poses challenges in predicting adverse cardiovascular outcomes. While artificial intelligence (AI) has shown potential for predicting cardiovascular disease (CVD) and stroke risks in other conditions, there is a lack of detailed, bias-free, and compressed AI models for ASCVD and stroke risk stratification in OSA patients. This study aimed to address this gap by proposing three hypotheses: (i) a strong relationship exists between OSA and ASCVD/stroke, (ii) deep learning (DL) can stratify ASCVD/stroke risk in OSA patients using surrogate carotid imaging, and (iii) including OSA risk as a covariate with cardiovascular risk factors can improve CVD risk stratification.
Methods: The study employed the Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) search strategy, yielding 191 studies that link OSA with coronary, carotid, and aortic atherosclerotic vascular diseases. This research investigated the link between OSA and CVD, explored DL solutions for OSA detection, and examined the role of DL in utilizing carotid surrogate biomarkers by saving costs. Lastly, we benchmark our strategy against previous studies.
Results: (i) This study found that CVD and OSA are indirectly or directly related. (ii) DL models demonstrated significant potential in improving OSA detection and proved effective in CVD risk stratification using carotid ultrasound as a biomarker. (iii) Additionally, DL was shown to be useful for CVD risk stratification in OSA patients; (iv) There are important AI attributes such as AI-bias, AI-explainability, AI-pruning, and AI-cloud, which play an important role in CVD risk for OSA patients.
Conclusions: DL provides a powerful tool for CVD risk stratification in OSA patients. These results can promote several recommendations for developing unique, bias-free, and explainable AI algorithms for predicting ASCVD and stroke risks in patients with OSA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11683711 | PMC |
http://dx.doi.org/10.31083/j.rcm2512463 | DOI Listing |
Nutr J
September 2025
Department of Gastroenterology and Hepatology, Hangzhou Red Cross Hospital, 208 Huancheng Dong Road, Hangzhou, 310003, Zhejiang Province, China.
Background: The potential association between dietary inflammatory index (DII) and colorectal cancer (CRC) risk, as well as colorectal adenomas (CRA) risk, has been extensively studied, but the findings remain inconclusive. We conducted this systematic review and dose-response meta-analysis to investigate the relationship between the DII and CRC and CRA.
Methods: We comprehensively searched the PubMed, Embase, Cochrane Library, and Web of Science databases for cohort and case-control studies reporting the relationship between DII and CRA, or between DII and CRC, as of 15 July 2025.
BMC Infect Dis
September 2025
Department of Laboratory Medicine, Affiliated Hospital of Medical School, Nanjing Drum Tower Hospital, Nanjing University, Nanjing, China.
Background: Serratia marcescens is an opportunistic pathogen increasingly associated with healthcare-associated infections and rising antimicrobial resistance. The emergence of multidrug-resistant (MDR) and carbapenem-resistant S. marcescens (CRSM) presents significant therapeutic challenges.
View Article and Find Full Text PDFOdontology
September 2025
Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).
View Article and Find Full Text PDFAesthetic Plast Surg
September 2025
Clinica Santa Maria di Leuca, 00188, Rome, Italy.
Sci Rep
September 2025
Department of Endocrinology, Affiliated Zhongda Hospital of Southeast University, Nanjing, China.
Visceral adiposity has been proposed to be closely linked to cognitive impairment. This cross-sectional study aimed to evaluate the predictive value of Chinese Visceral Adiposity Index (CVAI) for mild cognitive impairment (MCI) in patients with type 2 diabetes mellitus (T2DM) and to develop a quantitative risk assessment model. A total of 337 hospitalized patients with T2DM were included and randomly assigned to a training cohort (70%, n = 236) and a validation cohort (30%, n = 101).
View Article and Find Full Text PDF